
Heap Construction—50 Years Later

Stefan Edelkamp1, Amr Elmasry2 and Jyrki Katajainen3

1Institute for Artificial Intelligence, University Bremen, Am Fallturm 1, 28359 Bremen,
Germany

2Department of Computer Engineering and Systems, Alexandria University, 21544
Alexandria, Egypt

3Department of Computer Science, University of Copenhagen, Universitetsparken 5, 2100
Copenhagen East, Denmark

Email: jyrki@di.ku.dk

We study the problem of constructing a binary heap in an array using only a small
amount of additional space. Let N denote the size of the input, M the capacity
of the cache, and B the width of the cache lines of the underlying computer, all
measured as numbers of elements. We show that there exists an in-place heap-
construction algorithm that runs in Θ(N) worst-case time and performs at most
1.625N +o(N) element comparisons, 1.5N +o(N) element moves, N/B+O(N/M · lgN)
cache misses, and 1.375N + o(N) branch mispredictions. The same bound for the
number of element comparisons was derived and conjectured to be optimal by
Gonnet and Munro; however, their algorithm requires Θ(N) pointers. For a tuning
parameter S, the idea is to divide the input into a top tree of size Θ(N/S) such
that each of its leaves root a bottom tree of size Θ(S). When S = Θ(lgN/ lg lgN),
we can convert the bottom trees into heaps one by one by packing the extra space
needed in a few words, and subsequently use Floyd’s sift-down procedure to adjust
the heap order at the upper levels. In addition to our theoretical findings, we also

compare different heap-construction alternatives in practice.

c© The British Computer Society 2016: This is the authors’ version of the work. It is posted here
for your personal use, not for redistribution. The definitive version was published in Comput. J. 60, 5
(2017), 657–674, http://dx.doi.org/10.1093/comjnl/bxw085.

Keywords: Data Structures; Binary Heaps; Heap Construction; Algorithm Engineering;
Element Comparisons; Element Moves; Cache Misses; Branch Mispredictions

1. INTRODUCTION

The binary heap, introduced by Williams [26], is a
binary tree in which each node stores one element. This
tree is almost complete meaning that all the levels are
full, except perhaps the last level where elements are
stored at the leftmost nodes. A binary heap is said to
be complete if it stores 2` − 1 elements, for a positive
integer `. The elements are in (min-)heap order, if for
each node the element stored at that node is not larger
than the elements stored at its (at most) two children.
A binary heap is conveniently stored in an array where
the elements are kept in the breadth-first order of the
tree starting by the root.

In this paper we consider the problem of constructing
a binary heap of N elements given in an array.
Our objective is to perform the construction in-place,
i.e. using a constant amount of additional space. To
be more specific, at any point of time, at most a
constant number of elements can be stored outside
the input array, and a constant number of variables
are used to store pointers, counters, and indices. As
usual, we assume that each variable (word) is capable
of storing O(lgN) bits. When measuring time, we

assume that instructions supported by contemporary
computers, including element comparisons and element
moves, have unit cost per instruction.

1.1. Earlier work

Williams’ [26] original algorithm constructs a binary
heap in-place in Θ(N lgN) worst-case time. Floyd [11]
improved the worst-case running time to Θ(N). These
classical results are covered by most textbooks on
algorithms and data structures (see, e.g. [5, Chapter
6]). Since our construction relies on Floyd’s heap-
construction algorithm (F), its complete description
is given in Figure 1. Floyd’s algorithm visits the
branch nodes in reverse array-index order, and at each
branch node it sinks the element at that node into
the two binary heaps already built in its two subtrees
to establish the heap order, in a procedure known as
sift-down. The node of the element that is being sifted
down is first vacated; let x refer to this element. On the
way down, the elements at the two children (if any) of
the vacant node are compared, then the smaller of the
two is compared to x, and is promoted to the vacant
place if it is smaller than x. If a promotion took place,

The Computer Journal, Vol. 60, No. 5, 2017

2 S. Edelkamp, A. Elmasry and J. Katajainen

procedure root
output index
return 0

procedure left-child
input i: index
output index
return 2i+ 1

procedure right-child
input i: index
output index
return 2i+ 2

procedure parent
input i: index
output index
assert i 6= 0
return b(i− 1)/2c

procedure sift-down
input a: element[] as reference, i: index, N : size
assert i < N
x← a[i]
while left-child(i) < N

j ← left-child(i)
if right-child(i) < N and a[right-child(i)] < a[j]

j ← right-child(i)
if not (a[j] < x)

break
a[i]← a[j]
i← j

a[i]← x

procedure make-heap
input a: element[] as reference, N : size
if N < 2

return
for i← parent(N − 1) down to root()

sift-down(a, i, N)

FIGURE 1. Floyd’s heap-construction algorithm (F) in pseudo-code. Throughout the paper, array indexing starts from 0,
whereas in [11] it is started from 1. Array a is passed by reference; other parameters are passed by value.

the process continues from the vacant child and repeats
until either a leaf is reached or until x is not larger than
the smaller element at the two children. Finally, x is
moved to the vacant node, which may be its original
place if no promotions took place inside the loop.

Without loss of generality, we can restrict ourselves to
considering inputs of size 2`− 1 elements, for a positive
integer `. As pointed out for example in [3], the nodes
that do not root a complete subtree are located on the
path from the last leaf to the root. Assuming that
we have an algorithm A that can convert a complete
subtree into a heap, a general algorithm that accepts
inputs of arbitrary size is obtained by

1. traversing the path from the last leaf to the root—
call this path p,

2. considering the siblings of each of the nodes on p
and converting the subtrees rooted at them into
heaps using algorithm A, and

3. calling Floyd’s sift-down for each of the nodes on
p bottom-up.

For a tree of size N , the number of nodes on p is
blgNc+ 1. Hence, after making the complete subtrees
into heaps, combining them into a single heap can be
done in O(lg2N) worst-case time, so this combination
does not affect the constant factor of the leading term
in the complexity expressions for the overall heap
construction.

To get an indication of the runtime performance of
a heap-construction algorithm when the corresponding
program is run on a computer, there is a long tradition
to analyse meticulously different quantities associated

with this metric [18, Section 5.2.3]. The performance
indicators that are relevant for this study are the
following:

• element comparison: For variables x and y that
store an element, any assignment “b ← (x < y)”
is an element comparison, where b is a Boolean
variable. Naturally, either x or y or both can be
array locations.

• element move: For variables x and y that store
an element, any assignment “x← y” is an element
move. Again, either x or y or both can be array
locations. Hence, a swap of two array elements
is counted as three element moves and a cyclic
rotation of k array elements is counted as k + 1
element moves.

• cache miss: In a two-level memory, the data is
transferred in blocks between a small, fast memory
(cache) and a large, slow memory. A miss occurs
when the desired data is not in the fast memory and
the processor has to wait until the block transfer
from the slow memory is completed.

• branch misprediction: A conditional branch
“if (b) goto λ”, where b is a Boolean variable
and λ is a label, is problematic in a pipelined
processor since the next instruction may not be
known—will the jump materialize or not—when its
execution is started. A misprediction occurs when
a branch predictor, that is supposed to guess the
next instruction, makes a wrong prediction and the
processor has to wait until the correct instruction
is fed into the pipeline.

The Computer Journal, Vol. 60, No. 5, 2017

Heap Construction—50 Years Later 3

Observe that an element comparison is not necessarily
followed by a conditional branch. Therefore, the
number of branch mispredictions can be smaller than
that of element comparisons. The number of branch
mispredictions can also be larger if the results of index
comparisons are often mispredicted.

In particular, note that we have not tried to minimize
the number of instructions executed since this type
of optimization depends heavily on the instruction set
used by the underlying computer. In his epic series of
books on the meticulous analysis of programs, Knuth
[17, Section 1.3] uses his mythical MIX computer and
his plan is to use a more modern MMIX computer in the
future. In [15] and its follow-up papers (see, e.g. [1, 9]),
the primitives of the pure-C programming language
were used for the same purpose. Our experiments
show that, when optimizing the performance indicators
mentioned above, it is often the case that the number
of instructions executed will increase. However, since
cache misses and branch mispredictions are expensive
on contemporary computers, the actual running time
can still be smaller. Also, in applications where
elements are complicated objects, element comparisons
and element moves can be costly.

Even though the running time of Floyd’s heap-
construction algorithm is asymptotically optimal, for
some performance indicators the optimal complexity
bounds for heap construction are still unknown. In
Table 1, we summarize the known bounds on the
number of element comparisons when constructing a
binary heap of size N . Here the champions are the
algorithm of Gonnet and Munro [13] and the algorithm
of McDiarmid and Reed [20] that perform at most
1.625N + o(N) element comparisons in the worst case
and approximately 1.521N+o(N) element comparisons
in the average case, respectively. Unfortunately, both
algorithms require a linear amount of extra space to
achieve these bounds. Both algorithms are conjectured
to provide the best possible upper bounds in their
respective categories, but no one has been able to prove
or disprove these conjectures. The best lower bound of
1.37N element comparisons comes from Li and Reed
[19]; the proof relies on computer calculations, the
correctness of which we have not tried to verify. An
information-theoretical lower bound of 1.364N element
comparisons was proved in [13].

Already in the original description, Williams [26]
tried to minimize the number of element moves
performed in sift-down in two ways:

1. Dig a hole at the root and keep the element being
sifted down in a temporary location, and then
repeatedly fill this hole with an element taken from
one of the children and create a new hole at the
level below. This avoids the use of swaps that are
more expensive.

2. Ensure that no element moves are done if the
element being sifted down is the smallest of all

elements under consideration (see Figure A.1 in the
Appendix).

As shown in Figure 1, Floyd’s algorithm also employed
the hole technique. The number of element moves
performed by Floyd’s algorithm is at most 2N in
the worst case and approximately 1.744N on the
average. Since sift-down is called for many small
trees, with the second optimization the number of
element moves reduces to approximately 1.531N on the
average. Since we could not find these average-case
results from the literature as simple, both of them are
proved analytically in the Appendix. The algorithm
of McDiarmid and Reed [20] can be programmed to
perform exactly the same number of element moves
as the move-optimized version of Floyd’s algorithm,
i.e. it performs at most 2N element moves in the worst
case and approximately 1.531N element moves on the
average.

Consider a computer that has a two-level memory,
where the size of the cache is M and the data is
transferred in blocks of size B between the cache and
main memory; both M and B are measured in elements.
An algorithm is said to be cache oblivious if it does not
know M and B. We assume that the cache is ideal,
so that the optimal off-line algorithm is used to eject a
block from the cache when it is full. The ideal cache
model is standard in the analysis of cache-oblivious
algorithms [12]. When constructing a binary heap of
size N , an optimal cache-oblivious algorithm performs
N/B cache misses, since the whole input has to be read
at least once. Bojesen et al. [1] showed how Floyd’s
algorithm can be made cache oblivious by performing
about N/B cache misses under reasonable assumptions.
For the algorithms involving linear extra space, this
kind of behaviour cannot be achieved due to the cache
misses incurred when accessing the additional memory.

By decoupling comparisons from conditional
branches, Elmasry and Katajainen [9] showed that any
program can be transformed to a form that has at
most one conditional branch, the outcome of which is
easy to predict. However, the runtime penalty induced
by this transformation could be high; the running time
of the transformed program depends on the length of
the original program. In their case study, they con-
sidered heap construction: It was effective to remove
hard-to-predict branches (those related to element
comparisons), but it did not give any, or gave only
a little, performance gain to remove easy-to-predict
branches (those related to index comparisons). That
is, instead of aiming at the absolute minimum number
of branch misprections, the golden mean turned out to
be the best course of action in practice.

1.2. Contributions

In the theoretical part of this study, our main
contribution is an algorithm template that can be used
to make an existing algorithm A for heap construction

The Computer Journal, Vol. 60, No. 5, 2017

4 S. Edelkamp, A. Elmasry and J. Katajainen

TABLE 1. The number of element comparisons required by different heap-construction algorithms. The input is of size
N ; the average-case results assume that the input is a random permutation of N distinct elements. As a shorthand, ∼f(N)
represents any quantity that approaches f(N) as N grows.

inventor name worst case average case extra space

Floyd [11, 21] F 2N ∼1.881N Θ(1) words
Gonnet & Munro [13] GM ∼1.625N ∼1.625N Θ(N) words
McDiarmid & Reed [20] MR 2N ∼1.521N Θ(N) bits
Li & Reed [19] lower bound ∼1.37N ∼1.37N Ω(1) words

to run in-place. First, in order to solve a subproblem
of size S, we reduce the amount of extra space used by
algorithm A to O(lgN + S lgS) bits. Second, we use
this modified algorithm to build heaps of size Θ(S) at
the bottom of the input tree. For S = Θ(lgN/ lg lgN),
we keep the needed bits in a constant number of words.
Third, we combine these bottom heaps by exploiting
Floyd’s sift-down procedure at the upper levels of the
tree. The key observation is that the work done by all
sift-down calls at the upper levels is now sublinear.

We apply this algorithm template for both the
algorithm of Gonnet and Munro [13] and that of
McDiarmid and Reed [20]. This leads to in-place
algorithms that achieve the best known bounds for
the number of element comparisons performed in the
worst case and in the average case, respectively. In
addition to the number of element comparisons, we
optimize the number of element moves. As far as we
know, prior to our work, no in-place algorithm was
known to achieve the bound of 1.5N + o(N) element
moves in the worst case. By using extra space for S
elements, the number of element moves can be reduced
to N +O(S+N lgS/S). Without affecting the number
of element comparisons and that of element moves, we
show how the derived algorithms can be made cache
oblivious such that they incur about N/B cache misses
under reasonable assumptions. Here we rely on the
work of Bojesen et al. [1]. Finally, we do branch
optimization in a way that does not make the other
performance indicators worse. Here we rely on the work
of [9] and [10].

In the experimental part of this study, we
examine when different optimizations are effective on
contemporary computers. Branch optimization turns
out to be effective for small problem instances, and
cache optimization for large problem instances. Since
the number of instructions executed is increased by a
factor of four to eight as a consequence, comparison
and move optimizations are first effective when these
primitives require a large number of instructions.

Compared to the conference version [4], in this
journal version of the paper we have

• made the algorithm template more generic so
that it can be instantiated with the algorithm of
Gonnet and Munro [13] and that of McDiarmid
and Reed [20] without the use of any advanced data
structures;

• reduced the upper bound on the number of element
moves from 2.125N + o(N) to 1.5N + o(N);

• incorporated the effect of branch mispredictions;
and

• made the experiments more extensive by measuring
the number of primitives executed, instead of
just considering the running time, the number of
element comparisons, and the number of element
moves for average-case inputs.

2. OPTIMIZING HEAP CONSTRUCTION
FOR DIFFERENT PERFORMANCE IN-
DICATORS

Assume we are given a heap-construction algorithm
A that requires some extra space at run-time. In
this section we describe a transformation to convert
algorithm A to an in-place algorithm, the effectiveness
of which is almost the same as the original. The
basic requirement set for algorithm A is that it can be
modified to use O(lgN+S lgS) bits of additional space
when constructing a subheap of size S. Later on, we
show how the algorithm of Gonnet and Munro [13] can
be modified to satisfy this requirement; the algorithm of
McDiarmid and Reed [20] can process a subtree of size
S with O(lgN + S) bits so the transformation applies
to it as such.

2.1. Algorithm template

Let us consider the task of building a binary heap in an
array of size N , where N = 2` − 1 for some positive
integer `. The basic idea is to use a stratification
technique where the input, when seen as a tree, is
divided into a top tree of size 2k − 1 and a collection of
bottom trees, each leaf of the top tree rooting a bottom
tree of size S = 2h− 1, for some positive integers k and
h. This two-layers partitioning is visualized in Figure 2.

Now we make the input array into a heap as follows:

1. Improve algorithm A such that it can process a
subheap of size S using at most O(lgN + S lgS)
bits of additional space.

2. Apply this improved algorithm for all bottom trees.
Since these subproblems are independent, the space
used in one construction can be released and reused
in the next.

The Computer Journal, Vol. 60, No. 5, 2017

Heap Construction—50 Years Later 5

FIGURE 2. Division of the input into two layers: top tree
of size T and bottom trees of size S; T = 2k−1, S = 2h−1,
and N = 2k+h−1 − 1, for some positive integers k and h.

. . .

size: T

size: S

3. Use the sift-down procedure of Floyd’s algorithm
to establish heap order at the top tree.

The crucial observation is that, by carefully choosing
the parameter S, the work done by the sift-down at the
upper levels becomes sublinear. Next, we explain why.

Provided that the modification specified in
Item 1 is possible, we choose S to be a power
of two minus one from the half-open interval
[lgN/ lg lgN . . 2 lgN/ lg lgN), although depending
on the space efficiency of algorithm A other choices
would also work. With this choice, the template pro-
vides an algorithm that is fully in-place, since in Item 2
the bits needed can be stored in a constant number of
words and in Item 3 the sift-down procedure of Floyd’s
algorithm operates in-place.

Let us now analyse the performance of this template
under the assumption that algorithm A can process a
subheap of size S at TA(S) cost and that algorithm F
can handle one call of sift-down at α · j cost, where
α is a constant and j is the height of the starting
node of sift-down. The number of bottom trees is
at most N/S. Hence, the cost of Item 2 is bounded
by N/S · TA(S) + O(1). In particular, the constant
factor of the leading term of the cost expression is
determined by TA(S), i.e. it will not increase by this
construction. Since there are (N + 1)/2j+1 nodes at
height j of the input tree, and as we process the nodes
at height blgSc + 1 upwards, the total work done in
Item 3 is proportional to

∑blgNc
j=blg Sc+1 α · j · (N + 1)/2j+1 = O

(
N · lg S

S

)
= O

(
N · (lg lgN)2

lgN

)
= o(N) .

2.2. Comparison optimization

In our construction we should repeatedly convert a
subtree into a heap. Assume that the elements are
in an array a and let J be the index of the root of
the subtree under consideration. We assume that the
subtree is complete. For a positive integer `, let 2` − 1
be the number of its elements.

As a minor complication, the algorithm of Gonnet
and Munro [13] (GM) needs 2` elements to build a
binary heap of size 2` − 1; one excess element is simply
discarded. When we process a subtree of size 2` − 1,
we can use any element outside it as an additional
element. For the sake of simplicity, we assume first
that the output is to be produced to a separate array
that is of the same size as the array a. Hence, when a
subtree rooted at index J is processed, the output is to
be produced in the corresponding place in the output
array. After processing one subtree, the excess element
produced by the computation must be put back in place
of the additional element taken from a.

The original description of Gonnet and Munro [13]
relied on a heap-ordered binomial tree [23]. This is
a compact representation of a tournament tree (called
a selection tree in [18, Section 5.2.3]), but the two
data structures are equivalent. This equivalence is
discussed in length in [14, Section 3]. Several other data
structures like a weak heap [6] and a navigation pile [16]
could be used equally well. In the conference version of
this paper [4] we used a navigation pile, but, since a
tournament tree leads to a simpler implementation, we
use it here.

For a visualization of the involved data structures,
see Figure 3. For a set of 2` elements (players), a
tournament tree is a complete binary tree of 2`+1 − 1
nodes built above this set. We store the tree implicitly
in another array with the same layout as a binary heap,
so the child-parent relationships are calculated in the
same way. In a tournament tree, the ith leaf stores a
cursor to the ith element. Each branch node stores a
cursor to the smaller of the elements pointed to by its
two children. We call the subtree rooted at the child
containing the winner of a match the winner subtree
and the other the loser subtree. Obviously, the root
refers to the overall champion (Andre in Figure 3).

Given a subtree specified by an index J and an
additional element specified by an index E, the
algorithm creates a binary heap and an excess element
as follows:

1. Populate the leaves of the tournament with
the indices of the players in the input E, J ,
left-child(J), right-child(J),. . . , either in breadth-
first or depth-first order.

2. Run the tournament by performing all the matches
in a bottom-up knock-out manner until the overall
champion is known.

3. Convert the tournament tree into a binary heap by

The Computer Journal, Vol. 60, No. 5, 2017

6 S. Edelkamp, A. Elmasry and J. Katajainen

tournament

60

0

60

1

120

2

0

3

60

4

120

5

122

6

0

7

29

8

59

9

60

10

119

11

120

12

121

13

122

14

ordering
alphabetic

players

A: Andre

B: Björn

D: Don

F: Fred

J: Jimmy

N: Novak

P: Pete

R: Roger

input

P

0

R

29

J

59

A

60

F

119

B

120

N

121

D

122

FIGURE 3. A tournament tree for 8 players in pink and the input tree in blue; the indices are displayed above the nodes;
ordering is alphabetic; the root of the input tree is used as an additional element and the root of the subheap being processed
has index 29.

outputting it to a separate output array plus an
excess element by returning its index to the caller.

To populate a tournament tree, we set the cursors for
the leaf nodes. Thereafter we run the tournament
by traversing the tournament tree bottom-up level by
level and setting the cursor at each branch node after
comparing the elements referred to by its children. Such
an initialization requires N−1 element comparisons. Of
the three steps, the conversion step is more involved.
For this purpose, we need a subroutine that can be
used to update the tournament tree when the old
champion retires. When the champion is replaced by
another player, all the matches on the path from the
corresponding leaf to the root have to be replayed. For
a tournament tree that has 2` elements, such an update
involves ` element comparisons.

The conversion from a tournament tree for 2`

elements into a binary heap of size 2`−1 plus an excess
element can be done recursively; the key optimization
is to stop the recursion for a subproblem of size 8,
when one element comparison is enough to complete
the conversion [13]:

1. If N = 23, with one additional element comparison,
create a binary heap of size 7 and return by
forwarding an excess element to the caller.

2. Put the element referred to by the root of the
tournament tree at the root of the output heap.

3. Convert the loser subtree recursively into a binary
heap and an excess element.

4. In the winner subtree, replace the smallest element
with the excess element received from Item 3 and
update the tree in accordance.

5. Convert the updated winner subtree into a binary
heap and return by forwarding the excess element
to the caller.

Let us analyse the number of element comparisons
performed by this conversion procedure. To convert
a tournament tree of size 2` into a binary heap, we
perform two recursive calls for tournament trees of
size 2`−1 each. In addition, we need to execute one
update to refresh the cursors in the winner subtree. Let
C(2`) be the number of element comparisons needed
to convert a tournament tree of size 2` into a binary
heap plus an excess element. The number of element
comparisons performed for the minimum update is `−1.
From this, the next recurrence relation follows:

{
C(8) = 1,
C(2`) = 2C(2`−1) + `− 1 .

For N = 2` ≥ 8, the solution of this relation is C(N) =
5/8·N−lgN−1. Adding the N−1 element comparisons
needed by the initialization, the total number of element
comparisons to build a binary heap on N elements is
bounded by 1.625N .

The algorithm of Gonnet and Munro can now be
used to make the subtrees hanging on the path from
the last leaf to the root into heaps. For each subtree
being processed, the parent of its root can be used as
an additional element. In post-processing, the nodes on
the path from the last leaf to the root are processed
using Floyd’s sift-down procedure. Finally, the handles
to the input and the output arrays are swapped to give
an illusion that the construction was in the same array.

Using this algorithm as a subroutine to process the
bottom trees in our template, the next theorem follows.

Theorem 2.1. To arrange an array of size N in heap
order, the algorithm of Gonnet and Munro modified
to use a tournament tree requires working space for
N elements plus o(N) additional space, runs in O(N)
time, and performs at most 1.625N + o(N) element
comparisons and at most N + o(N) element moves.

The Computer Journal, Vol. 60, No. 5, 2017

Heap Construction—50 Years Later 7

2.3. Space optimization

In our algorithm template, when all bottom trees are
processed using the GM algorithm, any element from
the top tree can be used as the additional element. If
the algorithm was used as such to create a subheap of
size S, the tournament tree would requireO(S lgN) bits
of space, which is more than what we are planning to
use. Instead of storing an array index at each node of a
tournament tree, it would be more efficient to recall the
index of the root of the bottom tree under consideration,
and to store at each node an offset that specifies the
distance of the intended cursor from that recalled index.
Since each offset is a number between 0 and S, the whole
tournament tree can be stored in O(lgN + S lgS) bits.
When S = Θ(lgN/ lg lgN), the tournament tree can be
stored in a constant number of words.

0

1

2 3

E

J

left-child(J) right-child(J)

FIGURE 4. Offsets used by the algorithm (left) and the
corresponding indices used in array a (right); J refers to
the root of the bottom tree in question and E to the node
containing an additional element.

For an illustration of the correspondence between
offsets and indices, see Figure 4. The key is that
the algorithm operates with the offsets, but these are
converted to full-length indices on-the-fly whenever
needed. The conversion routine is described in Figure 5.
To assure that this conversion is a constant-time
operation, we have to assume that the whole-number
logarithm of a positive integer can be computed at unit
cost. If wanted, we could avoid this assumption by
storing the relative height of each node together with
the corresponding offset.

procedure offset-to-index
input ∆: offset, J : index, E: index (default 0)
output index
if ∆ 6= 0

h← blg ∆c
return 2h ∗ J + ∆− 1;

return E

FIGURE 5. Converting an offset to an index; an offset is
drawn from the range {0, 1, . . . , S} and an index from the
range {0, 1, . . . , N − 1}.

Our next objective is to get rid of the output array,
and arrange the elements in heap order within the input
array. While permuting the elements we need to also
be careful to optimize the number of element moves.

2.4. Move optimization

Let us consider the aforementioned version of GM in
greater detail to understand how elements are moved
when one of the bottom trees of size S is being
processed. In particular, the goal is to do things without
a separate output array. There are four arrays involved:
the array a of elements, the array t of offsets storing
the tournament tree, an array σ of offsets emulating
the heap, and an array b of bits telling which elements
are already in their final destinations.

Basically, the heap construction is done as in address-
table sorting [18, Section 5.2]; during the process,
the elements are not moved at all, but the moves
are emulated by updating the offsets in the array σ.
After the computation, when the array σ is read in
breadth-first order, it specifies a permutation of the
S elements. It is well known [17, Section 1.3.3] that,
given the specification of a permutation and using an
additional array of S bits, the task of permuting S
elements in an array in-place can be accomplished in
O(S) worst-case time by following the cycle structure
of the permutation. In the worst case, the number of
element moves performed is S plus the number of cycles
in the given permutation. Since the length of each cycle
can be two, b(3/2)Sc is an upper bound for the number
of element moves.

The procedure permute-in-place of Figure 6 is a
straightforward implementation of the permutation
algorithm that processes the cycles one at a time, by
walking through the array b to repeatedly advance to
the next unvisited cycle. If σ[i] = j, it means that
the element at the position specified by the offset j
should be moved to the position specified by the offset
i. To move the elements to their final destinations with
one extra element move per cycle, we use a temporary
location to store an element that will be ejected. For
each cycle, the array entry for the first element of
that cycle is ejected and the other elements are moved
in sequence to their destinations. At the end, the
ejected element is moved to its destination. To avoid
unnecessary element moves, we handle the trivial cycles
of length 1, if any, in the first loop that initializes the
bit array b telling which elements have been processed
so far. The second loop handles all non-trivial cycles.
The fact that there are at most (S + 1)/2 non-trivial
cycles ensures the upper bound of 1.5N + o(N) on the
number of element moves.

When we apply this move-optimization procedure
within our in-place implementation of the algorithm of
Gonnet and Munro, the next theorem follows.

Theorem 2.2. To arrange an array of size N in heap
order, when our algorithm template is instantiated with
the move-optimized version of the algorithm of Gonnet
and Munro, we get a heap-construction algorithm
that operates in-place, runs in O(N) worst-case time,
performs at most 1.625N + o(N) element comparisons
and at most 1.5N + o(N) element moves.

The Computer Journal, Vol. 60, No. 5, 2017

8 S. Edelkamp, A. Elmasry and J. Katajainen

procedure permute-in-place
input σ: offset[] as reference, n: size

a: element[] as reference, J : index
b: bit[] as reference

i← 0
while i < n

b[i]← false
if σ[i] = i

b[i]← true
i← i+ 1

i← 0
while i < n

if not b[i]
b[i]← true
H ← offset-to-index (i, J)
temporary ← a[H]
k ← σ[i]
while k 6= i

b[k]← true
K ← offset-to-index (k, J)
a[H]← a[K]
H ← K
k ← σ[k]

a[H]← temporary
i← i+ 1

FIGURE 6. Performing an in-place permutation while
optimizing the number of element moves.

Assume for a moment that, for an integer parameter
S, we were allowed to use O(S) extra space for pointers,
counters, indices, and elements. Then by the strategy
used in the basic version of the GM algorithm, with
bottom trees of size S each, we could organize the
computation as follows:

1. Allocate space for S elements and move one bottom
tree aside into it.

2. Make the next bottom tree into a heap while
moving it to the evacuated area. When the
elements are moved, a new empty bottom tree is
created.

3. Continue this process of building heaps until all
bottom trees are processed. At the end, make the
bottom tree in the temporary storage into a heap
using the last empty space as output area.

4. Release the temporary storage allocated.

That is, we use the hole technique for subtrees, not for
single elements as in [11]. The nodes at the top tree are
to be processed using Floyd’s sift-down as before.

When processing the bottom trees, each element is
moved once, except those put aside. The performance of
this non-in-place variant can be summarized as follows.

Theorem 2.3. For an integer parameter S, assume
that O(S) extra space is available to store pointers,

counters, indices, and elements. To arrange an array of
size N in heap order, when the above-mentioned variant
of the algorithm of Gonnet and Munro is used, we
get a heap-construction algorithm that uses O(S) extra
space, runs in O(N) worst-case time, performs at most
1.625N+O(N lgS/S) element comparisons and at most
N +O(S +N lgS/S) element moves.

2.5. Cache optimization

Consider the construction of a binary heap of size N
on a computer that has a two-level memory. Assume
that the capacity of the cache is M and that the
data is transferred in blocks of size B between the
two memory levels. We use the typical assumption
that M � B lgM . Under this assumption, a big
portion of the input can be simultaneously stored inside
the fast memory. When a subtree is inside the fast
memory, among the blocks containing the elements of
this subtree there may be at most two blocks per level
that also contain elements from outside this subtree.
By the assumption, a subtree of size cM together with
these 2dlg(cM)e blocks, constituting cM + 2Bdlg(cM)e
elements, can be simultaneously inside the fast memory,
provided that c < 1 is a small enough positive constant.

Consider an algorithm A (either MR or our
modification of GM) that is used to construct all
bottom heaps of size S, for S = Θ(lgN/ lg lgN). When
N > 2S, the parent of every subtree being processed
must exist and can be used as the additional element
needed by the construction. All the remaining nodes
are made part of the final heap by calling Floyd’s
sift-down routine. To improve the cache behaviour of
the algorithm, the enhancement proposed by Bojesen
et al. [1] is to handle these nodes in reverse depth-
first order instead of reverse breadth-first order. This
algorithm can be coded using only a constant amount
of extra memory by recalling the level where we are at,
the current node, and the node visited just before the
current node. When N is a power of two minus one,
the procedure is pretty simple. In the iterative version
given in Figure 7, the nodes at level blgSc are visited
from right to left. After making a subtree rooted at
such a node into a binary heap using algorithm A, the
ancestors of that node are visited one by one until an
ancestor is met that is a right child (its index is even);
for each of the visited ancestors the sift-down routine
is called.

When processing a subtree of size cM during the
depth-first traversal, each block is read into fast
memory only once. When such a subtree has been
processed, the blocks of the fast memory can be replaced
arbitrarily, except that the blocks containing elements
from outside this part are kept inside fast memory
until their elements are processed. For the topmost
dN/(cM)e elements, we can assume that each sift-down
incurs at most lgN cache misses. Thus, the total
number of cache misses incurred is at most N/B +

The Computer Journal, Vol. 60, No. 5, 2017

Heap Construction—50 Years Later 9

procedure ancestor
input i: index, h: height
output index

return b(i+ 1)/2hc − 1

procedure make-heap
input a: element[] as reference, N : size

assert N 6= 0 and N = 2dlgNe − 1

S ← 2blg(lgN/ lg lgN)c − 1
if N ≤ 2S

F::make-heap(a, N)
return

h← blgSc // height of the bottom trees
j ← ancestor(N − 1, h) // index of the root of a
bottom tree
i← parent(j) // index specifying the stop condition
while j > i

A::make-heap(a, j, N) // make a subheap
z ← j
while (z bitand 1) = 1

z ← parent(z)
F::sift-down(a, z, N)

j ← j − 1

FIGURE 7. Given an algorithm A that can make a
subheap, its cache-optimized version traverses the nodes
above the bottom trees in depth-first order.

O(N/M ·lgN). If we further assume that M � B lgN ,
the first term in this formula dominates. The discussion
so far can be summarized as follows:

Theorem 2.4. To arrange an array of size N in
heap order, on a computer that has two-level memory
where the cache is of size M and the cache blocks of
size B, when the cache-optimized algorithm template
is instantiated with our modification of the algorithm
of Gonnet and Munro, we get a heap-construction
algorithm that operates in-place, runs in O(N) worst-
case time, performs at most 1.625N + o(N) element
comparisons, 1.5N + o(N) element moves, and N/B +
O(N/M · lgN) cache misses.

2.6. Branch optimization

Consider the construction of a binary heap of size N
using the cache-optimized version of the GM algorithm.
At the upper levels, the number of operations performed
is o(N) so the same bound holds for the number
of branch mispredictions. In order to analyse the
number of branch mispredictions done at the lower
levels, we have to provide a more detailed description
of the modified version of the GM algorithm used for
constructing a subheap of size S. For the purpose of
our analysis, we assume that the branch predictor used
by the underlying hardware is static. Typically, such
a predictor predicts that the body of the then part
of an if statement is to be executed first. Hence, the

programmer should place the probable case in the then
part. For a loop condition, the prediction is correct
except for the last iteration when stepping out of the
loop.

In the modified version of the GM algorithm
described in Figure 8 we have used the branch
optimization where we interpreted the result of a
comparison as an integer and then used it to add 0
or 1 to an index. The same optimization was used in
[22] to optimize the behaviour of samplesort and in [9]
to optimize the behaviour of Floyd’s heap-construction
algorithm.

The procedures populate-tournament and
run-tournament initialize a tournament tree:
populate-tournament sets the offsets at the leaf
nodes in one loop and run-tournament sets the offsets
at the branch nodes in another loop. According to
our assumption, these loops incur one branch mispre-
diction each. In particular, the conditional branch
in offset-to-index only incurs a branch misprediction
when it is called with the offset of the additional elem-
ent (0). The procedure convert-tournament creates a
permutation that specifies the order of the elements
in the subheap being constructed. To unravel the
branch behaviour of this procedure, we programmed
it iteratively by using a stack. For a subheap of size
S, the maximum size of this recursion stack is only
O(lg2 S) bits. The conditional branch in the if state-
ment, testing whether we are in the general case or in
the base case, will be mispredicted (1/8)(S + 1) times,
i.e. once for every base case. The conditional branch
in the second if statement testing the emptiness of the
stack is only mispredicted once, since after this mispre-
diction the procedure terminates. Inside the procedure
update-tournament there are two loops that both incur
a branch misprediction when stepping out of them.
This procedure is called (1/8)(S + 1) times, which re-
sults in (1/4)(S + 1) additional branch mispredictions.
The base case must handle one hard-to-predict branch,
but these branch mispredictions were avoided by using
conditional moves. Thus, convert-tournament incurs
at most (3/8)(S + 1) branch mispredictions. Note that
the number of branch mispredictions can be further
reduced by increasing the size of the base case to be
larger than 8, and using a straight-line code for it with
conditional moves replacing conditional branches. For
example, if the base case is of size 16, we can reach a
bound of at most (3/16)(S + 1) mispredictions.

Consider the procedure permute-in-place in Figure 6.
In the first loop, the single assignment can be executed
as a conditional move so this loop only incurs one
branch misprediction. In the second loop, the elements
are visited once. If the first check whether the
element has been moved or not incurs a branch
misprediction, the loop index is advanced and no other
mispredictions occur. Inside the if statement the
conditional branch of the while statement incurs one
branch misprediction when the processing of a cycle

The Computer Journal, Vol. 60, No. 5, 2017

10 S. Edelkamp, A. Elmasry and J. Katajainen

procedure populate-tournament
input t: offset[] as reference, n: size
i← 0
for j ← parent(n) to n− 1

t[j]← i
i← i+ 1

procedure run-tournament
input t: offset[] as reference, n: size

a: element[] as reference, J : index
for j ← parent(n− 1) down to root()

L← offset-to-index (t[left-child(j)], J)
R← offset-to-index (t[right-child(j)], J)
k ← left-child(j) + (a[R] < a[L])
t[j]← t[k]

procedure update-tournament
input t: offset[] as reference, i: node, n: size

excess: offset, a: element[] as reference
J : index

j ← i // root of the subtree considered
m← t[i] // offset of the old champion
while left-child(j) < n

j ← left-child(j) + (t[right-child(j)] = m)
t[j]← excess
while j 6= i

j ← parent(j)
L← offset-to-index (t[left-child(j)], J)
R← offset-to-index (t[right-child(j)], J)
k ← left-child(j) + (a[R] < a[L])
t[j]← t[k]

procedure general -case
input j: node, n: size
output Boolean
return left-child(left-child(left-child(j)))<parent(n)

procedure convert-tournament
input t: offset[] as reference, n: size

σ: offset[] as reference
a: element[] as reference, J : index

stack ← ∅
j ← root()
while true

σ[j + 1]← t[j]
if general -case(j, n)

k ← left-child(j)
winner ← k + (t[j] 6= t[k])
stack .push(winner)
loser ← k + (t[j] = t[k])
j ← loser

else
excess ← handle-base-case(t, j,σ,a, J)
if stack 6= ∅

j ← stack .pop()
update-tournament(t, j, n, excess,a, J)

else
σ[0]← excess
return

procedure make-heap
input a: element[] as reference

J : index, S: size

assert S 6= 0 and S = 2dlg Se − 1
allocate space for t, σ, and b
populate-tournament(t, 2 ∗ S + 1)
run-tournament(t, 2 ∗ S + 1,a, J)
convert-tournament(t, 2 ∗ S + 1,σ,a, J)
permute-in-place(σ, S + 1,a, J, b)
free space allocated for t, σ, and b

FIGURE 8. Algorithm of Gonnet and Munro modified to build a subheap of size S rooted at J ; the procedure
handle-base-case—that is not shown—is a straight-line program that handles the base case of size 8 with one element
comparison.

ends. The procedure permute-in-place then incurs at
most one branch misprediction per element, i.e. S+O(1)
branch mispredictions in total.

Our actual implementation follows the algo-
rithmic details described. The aim was to make
the number of branch mispredictions reason-
ably small without increasing the number of
element comparisons or the number of element
moves performed. Using the fact that the pro-
cedures populate-tournament , run-tournament ,
convert-tournament , and permute-in-place are called
at most N/S times and that S is Θ(lgN/ lg lgN), the
performance of our algorithm can be summarized as
follows:

Theorem 2.5. To arrange an array of size N in heap

order, on a computer that has a two-level memory where
the cache is of size M and the cache blocks of size B,
when the cache-optimized template is instantiated with
our branch optimization for the algorithm of Gonnet
and Munro, we get a heap-construction algorithm
that operates in-place, runs in O(N) worst-case time,
performs at most 1.625N + o(N) element comparisons,
1.5N+o(N) element moves, N/B+O(N/M ·lgN) cache
misses, and 1.375N + o(N) branch mispredictions.

3. EXPERIMENTS

The heap-construction algorithm of Gonnet and Munro
[13] is considered by many to be a theoretical
achievement that has little practical significance. Out
of curiosity, we wanted to investigate whether this

The Computer Journal, Vol. 60, No. 5, 2017

Heap Construction—50 Years Later 11

belief is true or not; in particular, whether the
improvements presented in this paper affect the state
of affairs. In addition to the in-place methods
discussed, we implemented relaxed variants of the
proposed algorithms that work in-situ, i.e. using
O(lgN) variables to store pointers, counters, and
indices. We compare the performance of our algorithms
to several existing alternatives, and report the results
of our experiments in this section.

3.1. Methods considered

In an early stage of this study, we collected programs
from public repositories and wrote a number of
competitors for heap construction. In total, we
looked at over 20 heap-construction methods including:
Williams’ [26] algorithm of repeated insertions; Floyd’s
[11] algorithm of repeated merging with top-down,
bottom-up [25] and binary-search [2] sift-down policies,
as well as depth-first and layered versions of it [1]; and
McDiarmid and Reed’s [20] variant that has the best
known average-case performance.

We found that sifting down with binary search and
explicitly maintaining a search path were inferior, so
we excluded them from later rounds. The layered
construction [1] that iteratively finds medians to
build a heap bottom-up was fast on large inputs,
but the number of element comparisons performed
was high (larger than 2N), so we also excluded
it. Our implementation of Floyd’s algorithm with
the bottom-up sift-down had the same number of
element comparisons as the built-in function in the
C++ standard library and its running time was about
the same, so we also excluded it. We checked other
engineered variants with many refinements, e.g. the
code-tuned refinements discussed in [1], but they
were non-effective, so we relied on Floyd’s original
implementation. The GM versions using a weak
heap [6] and a navigation pile [16] were faster for integer
data, but performed more element moves than the
versions using a tournament tree, and hence these were
also excluded from this study.

The preliminary study thus left us with the following
noteworthy competitors:

• stl: The make-heap function that came with
our g++ compiler. On closer inspection, it was
found to rely on the bottom-up sift-down policy
[18, Exercise 5.2.3–18] (see also [25]). Two of
the underlying subroutines passed elements by
value, so this resulted in some unnecessary element
moves.

• F: Floyd’s [11] Algol program converted into C++.
In sift-down, this program employed the hole
technique, so element swaps were not used.

• GM: Our implementation of the algorithm of
Gonnet and Munro [13] using a tournament tree.

For an input of size N , the program used a
tournament tree that had space for (4/3)N indices
and a temporary output area that had space for N
elements.

• space-efficient GM: The space-efficient variation
on GM described in this paper. Both cache and
branch optimizations were applied. This program
could be configured to operate in-place or in-situ.
Both versions used O(1) extra space for elements.
The in-place variant used a packed array that
could store a sequence of integers of equal length
compactly. The in-situ variant stored the offsets in
an integer array. The program accepted a tuning
parameter γ (32 by default) and set the size of
the bottom trees to the closest power of two larger
than, or equal to, γ lgN/ lg lgN .

• MR: The bottom trees were processed using the
algorithm of McDiarmid and Reed [20]. As in
the previous program, both cache and branch
optimizations were applied. Also this program
could be configured to operate in-place (with a
packed array of bit pairs) or in-situ (with an
array of bytes). The program accepted a tuning
parameter µ (16 by default) and set the size of
the bottom trees to the closest power of two larger
than, or equal to, µ lgN . As proposed in [24], all
the elements on the sift-down path were moved
cyclically first after the final position of the new
element was known. When converting a bottom
tree into a heap, the indices of the element array
from the interval [0 . . N) and those of the packed
array from the interval [0 . . S) were updated in
tandem, which doubled the instruction count for
index operations.

We considered the following optimization options for
Floyd’s program:

• opt1 [9]: We made sure that sift-down was always
called with an odd N . This way, inside the inner
loop, one easy-to-predict branch could be removed.

• opt2 [9]: We interpreted the result of an element
comparison as an integer and used this value in
normal index arithmetic. This way, inside the inner
loop, the hard-to-predict branch in “if (condition)
j ← j + 1” could be replaced with an assignment
“j ← j + (condition)”.

• opt3 [9]: As in Figure A.1 in the Appendix, we did
not make any element moves when the element at
the root stayed in its original location.

• opt4 [1]: We visited the nodes in reverse depth-
first order instead of reverse breadth-first order.

• opt5 [9]: We made the construction in a single
loop by fusioning the two loops in make-heap and
sift-down. Inside this loop, conditional moves

The Computer Journal, Vol. 60, No. 5, 2017

12 S. Edelkamp, A. Elmasry and J. Katajainen

were used so that the number of element moves
would not increase to 5N , but two of the element
moves were left behind conditional branches. The
outcome of these two conditional branches was
predicted reasonably well so it was not worth
avoiding these branches.

For subscript i, we use Fi to denote the version of F
that used opti. When several subscripts are in use, all
these optimizations were applied at the same time.

3.2. Test environment

We performed the experiments in three different
computers, all of which run Linux and offered g++

compiler. Since the results were similar in all of these
computers, we only report the results obtained in one of
them. During experimentation, all unnecessary system
services were shut down. The hardware and software
specifications of the test computer were as follows.

• processor: Intel R© CoreTM i5-2520M CPU @
2.50GHz × 4

• word size: 64 bits

• L1 instruction cache: 32 KB, 64 B per line, 8-
way associative

• L1 data cache: 32 KB, 64 B per line, 8-way
associative

• L2 cache: 256 KB, 64 B per line, 8-way associative

• L3 cache: 3.1 MB, 64 B per line, 12-way
associative

• main memory: 3.8 GB, 8 KB per page

• operating system: Ubuntu 14.04 LTS

• Linux kernel: 3.13.0-79-generic

• compiler: g++ version 4.8.4

• compiler options: -O3 -std=c++11 -x c++

-Wall -DNDEBUG

• profiler: valgrind version 3.10.1

• profiler options: --tool=cachegrind

--cache-sim=yes --branch-sim=yes

A simple driver was written to measure the number
of element comparisons, the number of element moves,
and the running time. The profiler was used to measure
the number of instructions, the number of L3-level
cache misses, and the number of branch mispredictions.
The numbers provided by the profiler were based on
simulations.

When describing the algorithms, we specialized them
for inputs of size 2`−1 or 2`, for an integer `, but all our
programs were generalized to handle inputs of arbitrary
sizes. The input for the driver could be selected to be

• an increasing sequence of integers 〈0, 1, . . . , N − 1〉,

• a decreasing sequence of integers
〈N − 1, N − 2, . . . , 0〉, or

• a random permutation of integers
{0, 1, . . . , N − 1}.

Using these input sequences, we wanted to understand
how much the performance could vary for different
performance indicators. This way we aimed at finding
the worst-case behaviour for the performance indicators
studied. For program P, we use P to denote its
performance for the randomly permuted input. Every
experiment was repeated r = bR/Nc times, for R = 226

or R = 715 827 882, each time with a different input.
At the end, the measurement results were scaled by
dividing them by r × N , i.e. by reporting the cost per
element.

All the implemented programs had the same interface
as the C++ standard-library function make-heap.
The source code of the heap-construction programs
discussed is made available alongside this article [7].
Although the programs accepted any element, sequence,
and comparator type, all tests used 4-byte int elements,
a C array to store the elements, and std::less in
element comparisons. If other types of input data or
comparison functions are used in the application in
hand, we encourage that the reader performs his or her
own experiments before deciding which program to use.

3.3. Experimental results

In Figure 9, we display the average-case running times
for the most significant competitors considered. For
cache-sensitive programs, with a careful scrutiny, four
plateaus are visible in the curves, each corresponding
to one of the memory levels in the test computer (L1

cache, L2 cache, L3 cache, and main memory). For
other programs, there are no visible memory effects;
variations in the running times are due to the value of
N . When N is close to a power of two, a program
can be a bit faster than for other values. Based on
these observations, instead of using plots, we hereinafter
report the test results for only four problem sizes (small,
medium, large, and huge): N = 210−1, 215−1, 220−1,
and 225 − 1.

For different performance indicators, the obtained
results are reported in tabular form in Table 2 (running
time), Table 3 (element comparisons), Table 4 (element
moves), Table 5 (instructions), Table 6 (cache misses),
and Table 7 (branch mispredictions). The running time,
the number of instructions, cache misses, and branch
misprediction were measured for the random input. For
all programs, except stl, the up sequence maximized the
number of element comparisons and element moves; for
stl, the maximum was reached for the down sequence.

The Computer Journal, Vol. 60, No. 5, 2017

Heap Construction—50 Years Later 13

 0

 5

 10

 15

 20

10
3

10
4

10
5

10
6

10
7

10
8

10
9

r
u

n
n

in
g
 t

im
e
 /

 N

[n

s]

N [logarithmic scale]

average−case running time

L1 L2 L3

main
memory

basic GM
in−situ GM
stl
in−situ MR
F
F5
F1−4

FIGURE 9. Running time [ns], divided by N , for some of the heap-construction programs considered; input: random
permutation. The sizes of different memory levels are drawn as vertical lines. Since the virtual-memory support was switched
off, none of the programs could handle much larger input instances than those shown.

TABLE 2. Running time [ns], divided by N , for ten heap-construction programs; input: random permutation.

N stl F F1 F12 F1-3 F1-4 F5 GM in-situ GM in-situ MR

210− 1 9.36 7.96 7.86 4.64 4.60 5.10 3.57 10.35 16.82 9.70
215− 1 9.21 8.12 7.83 4.95 4.81 5.01 3.84 10.76 19.27 9.56
220− 1 9.91 8.76 8.51 6.03 5.82 4.98 5.47 17.33 19.38 9.51
225− 1 10.41 9.09 8.97 7.03 6.90 4.98 6.46 21.75 19.73 9.51

3.4. Discussion of the experimental results

Of the two starting points, F and GM, Floyd’s program
was simpler and faster. Moreover, due to the extensive
consumption of memory, the running time of GM
deteriorated when the size of the input became about
one fourth of the size of the L3 cache. Both in-
situ GM and in-situ MR were slower than F, but
their behaviour with respect to the number of element
comparisons and the number of element moves matched
the theoretical bounds proved. In fact, on the average,
the number of element moves performed by in-situ
GM was close to N since, when permuting the elements
into the final destinations, the cycles considered were
typically slightly longer than two (which induced the
term 1.5N as the upper bound on the number of element
moves).

By varying the tuning parameters for in-situ GM
and in-situ MR, it turned out that the results became
stable and the theoretical bounds for the number of
element comparisons and the number of element moves
were reached when the parameters are set to the default
values, or higher. Therefore, we used the default values
in all the experiments reported.

From the different versions of F, the effects of branch
optimization are clearly visible. However, when branch
optimization was applied alone, the programs were still
sensitive to caching effects. This is seen from the results
for F1, F12, F1-3, F5; branch optimization was more
effective for small values of N than for large values of
N . Branch optimization and cache optimization applied
in F1-4, however, improved the running time for large
values of N , but an addition of a single branch made it
a bit slower than the branch-optimized version F5 for
small values of N .

For the branch-optimized version F5, the upper
bound 2N for the number of element comparisons and
element moves was reached for all types of inputs since
the code makes very few choices. Hence, it is not
adaptive for random inputs.

For integer data, the expected number of instructions
executed by F1-3 was as low as 14.37. To optimize
the number of element comparisons and the number
of element moves, the price that we had to pay was
a significant increase in the number of instructions
executed; for in-situ GM it was about a factor of eight
higher.

The Computer Journal, Vol. 60, No. 5, 2017

14 S. Edelkamp, A. Elmasry and J. Katajainen

TABLE 3. Number of element comparisons performed, divided by N , for some heap-construction programs; input:

decreasing sequence for stl; increasing sequence for F, GM, and in-situ GM; and random permutation for stl, F, F5,

and in-situ MR.

N stl stl F F F5 GM in-situ GM in-situ MR

210− 1 1.98 1.64 1.98 1.86 1.98 1.65 1.72 1.52
215− 1 2 1.65 2 1.88 2 1.63 1.65 1.54
220− 1 2 1.66 2 1.88 2 1.63 1.64 1.53
225− 1 2 1.65 2 1.88 2 1.63 1.64 1.53

TABLE 4. Number of element moves performed, divided by N , for some heap-construction programs; input: decreasing

sequence for stl; increasing sequence for F, GM, and in-situ GM; and random permutation for stl, F, F3, F5, and

in-situ MR.

N stl stl F F F3 F5 GM in-situ GM in-situ MR

210− 1 3.98 3.24 1.99 1.73 1.52 1.99 2.06 1.28 1.52
215− 1 4 3.26 2 1.74 1.53 2 2 1.06 1.53
220− 1 4 3.26 2 1.74 1.53 2 2 1.04 1.53
225− 1 4 3.26 2 1.74 1.53 2 2 1.04 1.53

TABLE 5. Number of instructions executed, divided by N , for ten heap-construction programs; input: random permutation.

N stl F F1 F12 F1-3 F1-4 F5 GM in-situ GM in-situ MR

215− 1
220− 1
225− 1

26.18 22.25 20.37 16.59 14.37 15.71 23 50.88 114 ± 1 43.44

TABLE 6. Number of block transfers performed | cache misses incurred, both divided by N/B, for some heap-construction
programs; input: random permutation.

N stl/F F1-4 GM in-situ GM in-situ MR

210− 1 1 | 1 1 | 1 1 | 1 1 | 1 1 | 1
215− 1 5.30 | 1 1.03 | 1 18.00 | 1.01 1.03 | 1 1.05 | 1
220− 1 5.55 | 4.56 1.04 | 1 20.86 | 13.51 1.05 | 1 1.04 | 1
225− 1 5.87 | 5.84 1.04 | 0.99 21.08 | 20.40 1.05 | 0.99 1.04 | 0.99

TABLE 7. Number of branches executed | branch mispredictions incurred, both divided by N , for some heap-construction
programs; input: random permutation.

N stl F F1-3 F1-4 F5 GM in-situ GM in-situ MR

210− 1 4.88 | 0.93 4.53 | 0.83 2.17 | 0.27 2.42 | 0.47 2.97 | 0.04 4.90 | 0.31 10.55 | 0.46 6.55 | 0.74
215− 1 4.90 | 0.85 4.56 | 0.80 2.18 | 0.24 2.43 | 0.47 3 | 0.03 4.64 | 0.42 12.22 | 0.46 6.50 | 0.74
220− 1 4.91 | 0.85 4.57 | 0.80 2.18 | 0.24 2.43 | 0.47 3 | 0.03 4.63 | 0.34 12.34 | 0.46 6.48 | 0.67
225− 1 4.91 | 0.85 4.56 | 0.80 2.18 | 0.24 2.43 | 0.47 3 | 0.03 4.63 | 0.33 12.34 | 0.46 6.48 | 0.67

TABLE 8. Running time [ns], divided by N , for in-situ and in-place variants; input: random permutation.

N in-situ GM in-place GM in-situ MR in-place MR

210− 1 16.82 38.90 9.70 14.93
215− 1 19.27 48.86 9.56 14.79
220− 1 19.38 49.62 9.51 14.80
225− 1 19.73 49.25 9.51 14.78

TABLE 9. Number of instructions executed, divided by N , for in-situ and in-place variants; input: random permutation.

N in-situ GM in-place GM in-situ MR in-place MR

215− 1
220− 1
225− 1

114 ± 1 295 ± 3 43.44 79.53

The Computer Journal, Vol. 60, No. 5, 2017

Heap Construction—50 Years Later 15

When measuring the cache misses, the experiments
show that the cache behaviour of stl, F (and its
branch-optimized variants), and GM was not optimal.
For F1-4, in-situ GM, and in-situ MR, the
cache performance was almost optimal, confirming the
theoretical results.

The results show that the number of branches
executed by in-situ GM and in-situ MR was higher
than that for the other programs. This is an indication
that the programs are more complicated. In a sense,
for in-situ MR, the theory is a bit misleading since
element comparisons are replaced with bit comparisons
or index comparisons. So, in fact, the number of
branches executed is increased, not reduced.

3.5. Cost of being in-place

Intuitively, an algorithm is considered to operate in-
place if it does not need to make a copy of its
data. In practical terms, any algorithm that has this
property and uses sublinear additional space would
be acceptable. This was the practical motivation for
allowing O(lgN) extra space in our in-situ solutions. It
is also well known that the requirement of operating
fully in-place can make the programs unacceptably
slow. How much in our case?

To understand how much overhead a fully in-place
solution has in the case of the GM and MR algorithms,
we implemented a separate packed-array structure that
could store S small integers of at most b ≤ w bits each
using a total of at mostO((Sb)/w) words, where w is the
word size of the underlying computer. That is, under
the assumption that w ≥ lgN , for [S = O(lgN/ lg lgN)
and b = lgS] or [S = O(lgN) and b = 2], the amount
of extra space used is only O(1) words. Except for the
packed array, only a few lines of code had to be changed
to get from the in-situ solution (in-situ GM or in-
situ MR) to an in-place solution (in-place GM or
in-place MR).

For the in-place variants, the comparison, move, and
cache behaviour were still at the same good level. We
have to also admit that, for all variants of GM and
MR, the branch behaviour is bad compared to the
variants of F, so there is no reason to report that. This
leaves us with two quantities: the running time and the
number of instructions executed for a random input.
We report these two quantities in Table 8 and Table 9.

The message is clear: One should take the in-
place algorithms as theoretical achievements; we do not
expect them to be competitive in practice.

3.6. Further tuning

Even though the in-place variants are not practically
usable, there are still several options how the in-situ
variants can be improved. Profiling showed that, for in-
situ GM, the main reason for its inefficiency was the
conversion of offsets to indices: it used about 30 % of its

TABLE 10. Running time [ns], divided by N , for tuned
GM; input: random permutation.

N in-situ GM tuned GM

210− 1 16.82 9.47
215− 1 19.27 9.62
220− 1 19.38 9.47
225− 1 19.73 9.62

TABLE 11. Number of instructions executed, divided by
N , for tuned GM; input: random permutation.

N in-situ GM tuned GM

215− 1
220− 1
225− 1

114 ± 1 48 ± 0.25

running time for offset-to-index calculations. On the
other hand, the basic version avoided offset-to-index
calculations by populating the tournament tree with
indices, not with offsets. For small values of N , GM
was a factor of two faster than in-situ GM.

This observation motivated us to implement yet
another variant of GM:

• tuned GM: This version used O(lgN) extra space
for pointers, counters, and indices, but it took the
further step to use O(lgN) extra space for elements
as well. The size of the bottom trees was fixed
to a power of two minus one that was just larger
than, or equal to, ν lgN . By default, ν = 12. By
Theorem 2.3, with this amount of extra space for
elements, the number of element moves performed
in the worst case reduced to N+O(N lg lgN/ lgN).

The test results for in-situ GM and tuned GM
are compared—for average-case inputs—in Table 10
(running time), Table 11 (instruction count), Table 12
(element moves), and Table 13 (branches and branch
mispredictions). For integer data, the tuned version was
never more than a factor of two to three slower than
the best versions of Floyd’s program. For the other
performance indicators, except the number of branch
mispredictions, it matched the best known bounds up to
lower order terms, and even for branch mispredictions
the results were not bad.

TABLE 12. Number of element moves, divided by N , for
tuned GM; input: random permutation.

N in-situ GM tuned GM

210− 1 1.22 1.46
215− 1 1.04 1.05
220− 1 1.03 1.02
225− 1 1.03 1.01

The Computer Journal, Vol. 60, No. 5, 2017

16 S. Edelkamp, A. Elmasry and J. Katajainen

TABLE 13. Number of branches executed | branch
mispredictions incurred, both divided by N , for tuned GM;
input: random permutation.

N in-situ GM tuned GM

210− 1 12.22 | 0.46 4.01 | 0.24
215− 1 12.22 | 0.46 3.48 | 0.19
220− 1 12.34 | 0.46 3.45 | 0.19
225− 1 12.34 | 0.46 3.42 | 0.19

4. CONCLUSIONS

For most practical purposes, Floyd [11] solved the
problem of heap construction in 1964. We could readily
use his Algol program and convert it into C++ with
very few modifications. Bojesen et al. [1] showed how
Floyd’s algorithm can be made cache oblivious so that,
under reasonable assumptions, its cache behaviour is
almost optimal. Elmasry and Katajainen [9] showed
how Floyd’s algorithm can be modified to avoid branch
mispredictions. For integer data, the cache-optimized
version could outperform Floyd’s original for large
problem instances, and the branch-optimized version
could outperform it for small problem instances. The
other algorithms discussed in this paper can be used
to implement programs that only outperform these
champions when element comparisons and/or element
moves are expensive.

Theoretically speaking, the heap-construction prob-
lem remains fascinating. We showed how the algorithms
believed to be the best possible with respect to the num-
ber of element comparisons could be optimized with
respect to the amount of space used and the number
of element moves performed. In the worst case, our
in-place variant of Gonnet and Munro’s algorithm re-
quires at most 1.625N+o(N) element comparisons and
at most 1.5N + o(N) element moves. We also showed
that the same technique can be used to run McDiarmid
and Reed’s algorithm in-place. Moreover, we proved
that both algorithms can be modified to demonstrate
almost optimal cache behaviour.

The algorithm template used to obtain these results
is quite general and the same technique can be applied
for other types of heaps as well. If a heap-building
procedure exists that requires additional space for its
operation, it can be converted to operate in-place or
in a space-efficient manner by processing the bottom
subtrees and the top subtree as described in this paper.
Recently, we have shown [8] that a similar approach
can be used successfully for the construction of strong
heaps that are otherwise as binary heaps, but, for each
node, the left child is known to store the smaller of the
elements at the two children.

The main question that is still not answered is: Can
the bounds for heap construction be further improved
for any of the performance indicators considered?

ACKNOWLEDGEMENTS

We thank Jingsen Chen (Lule̊a University of Technol-
ogy) for inspiring us to write the conference version of
this paper [4].

APPENDIX A. AVERAGE NUMBER OF
ELEMENT MOVES FOR
FLOYD’S ALGORITHM

In this appendix, we analyse the number of element
moves performed by Floyd’s heap-construction algo-
rithm and its move-optimized version. We recall the
move-optimized version in Figure A.1 in the form pro-
posed in [9]. In the analysis, we closely follow the guide-
lines given in [21]. Actually, the analysis given in [21,
Theorem 2] turns out to be for the optimized version,
not for the original version.

procedure sift-down
input a: element[] as reference, i: index, N : size
assert left-child(i) < N and N mod 2 = 1
j ← left-child(i) + (a[right-child(i)] < a[left-child(i)])
if not (a[j] < a[i])

return
x← a[i]
a[i]← a[j]
i← j
while left-child(i) < N

j ← left-child(i) + (a[right-child(i)] < a[left-child(i)])
if not (a[j] < x)

break
a[i]← a[j]
i← j

a[i]← x

FIGURE A.1. sift-down in the move-optimized and
branch-optimized version of Floyd’s heap-construction
algorithm; otherwise, the construction is done as in Figure 1
except that, when N mod 2 = 0, the last element is inserted
into the heap separately.

Theorem A.1. On the average, Floyd’s algorithm
(Figure 1) performs approximately 1.744N element
moves when constructing a heap of size N = 2` − 1,
for an integer ` ≥ 1.

Proof. Let S(i) denote the number of element moves
performed by the sift-down procedure of Floyd’s
algorithm for a heap of size n = 2i − 1 and let P (i)
denote the number of promotions done when sinking a
random element down a heap of size 2i − 1, i.e. P (i) is
the number of element moves done inside the while
loop. The key observation is that, with probability
1/(2i− 1), the new element is the smallest of the 2i− 1
elements under consideration and the traversal down
can be stopped. Hence, the following two recurrences
are used to describe the number of element moves done:

The Computer Journal, Vol. 60, No. 5, 2017

Heap Construction—50 Years Later 17

P (i) =

{
1 if i = 1 ,

1 + 2i−2
2i−1 · P (i− 1) otherwise .

(A.1)

S(i) =

{
0 if i = 1 ,

2 + 2i−2
2i−1 · P (i− 1) otherwise .

(A.2)

By repeated substitutions of EquationA.1, we get for
i ≥ 2

2i−2
2i−1 · P (i− 1) = n−1

n + n−3
n + · · ·+ n−(2i−1−1)

n

= i− 1−
∑i−1

i=1(2i − 1)/n

= i− 1− 2i−2
n + i−1

n
= i · (n+ 1)/n− 2
= i · 2i/(2i − 1)− 2.

In accordance, by using Equation A.2, we get for i ≥ 2

S(i) = i · 2i/(2i − 1).

For i = 1, 2, . . ., there are 2`/2i subheaps of size 2i − 1.
Thus, the total number of element moves performed by
make-heap is ∑`

i=1
2`

2i · S(i)

= (N + 1)
∑`

i=2
i

2i−1
< (N + 1)

∑∞
i=2

i
2i−1

≈ 1.744N.

Theorem A.2. On the average, the move-optimized
version of Floyd’s algorithm (Figure A.1) performs ap-
proximately 1.531N element moves when constructing a
heap of size N = 2` − 1, for an integer ` ≥ 1.

Proof. For the move-optimized version, instead of
Equation A.1, we have the following recurrence

S(i) =

{
0 if i = 1 ,
2i−2
2i−1 · (2 + P (i− 1)) otherwise .

(A.3)

Using the formula for 2i−2
2i−1 ·P (i− 1) from Theorem A.1

and substituting in Equation A.3, we get for i ≥ 2

S(i) = i · 2i/(2i − 1)− 2/(2i − 1).

Hence, the number of element moves performed by the
move-optimized version is

∑`
i=1

2`

2i · S(i)

= (N + 1)
∑`

i=2(i
2i−1 −

2
2i·(2i−1))

< (N + 1)(1.744−
∑5

i=2
2

2i·(2i−1))

< (N + 1)(1.744− 0.1666− 0.0357− 0.0083− 0.002)
≈ 1.531N.

REFERENCES

[1] J. Bojesen, J. Katajainen, and M. Spork, Performance
engineering case study: Heap construction, ACM J.
Exp. Algorithmics 5 (2000), 15.1–15.44.

[2] S. Carlsson, A variant of Heapsort with almost optimal
number of comparisons, Inform. Process. Lett. 24, 4
(1987), 247–250.

[3] J. Chen, A framework for constructing heap-like
structures in-place, Proceedings of the 4th International
Symposium on Algorithms and Computation, Lecture
Notes in Computer Science 762, Springer, Berlin/
Heidelberg (1993), 118–127.

[4] J. Chen, S. Edelkamp, A. Elmasry, and J. Katajainen,
In-place heap construction with optimized comparisons,
moves, and cache misses, Proceedings of the 37th
International Symposium on Mathematical Foundations
of Computer Science, Lecture Notes in Computer
Science 7464, Springer, Berlin/Heidelberg (2012), 259–
270.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein, Introduction to Algorithms, 3nd Edition, The
MIT Press, Cambridge (2009).

[6] R. D. Dutton, Weak-heap sort, BIT 33, 3 (1993), 372–
381.

[7] S. Edelkamp, A. Elmasry, and J. Katajainen, Heap-
construction programs, CPH STL Report 2016-
1, Department of Computer Science, University of
Copenhagen, Copenhagen (2016).

[8] S. Edelkamp, A. Elmasry, and J. Katajainen,
Optimizing binary heaps, Theory Comput. Syst. (to
appear).

[9] A. Elmasry and J. Katajainen, Lean programs, branch
mispredictions, and sorting, Proceedings of the 6th
International Conference on Fun with Algorithms,
Lecture Notes in Computer Science 7288, Springer,
Berlin/Heidelberg (2012), 119–130.

[10] A. Elmasry, J. Katajainen, and M. Stenmark, Branch
mispredictions don’t affect mergesort, Proceedings of
the 11th International Symposium on Experimental
Algorithms, Lecture Notes in Computer Science 7276,
Springer, Berlin/Heidelberg (2012), 160–171.

[11] R. W. Floyd, Algorithm 245: Treesort 3, Commun.
ACM 7, 12 (1964), 701.

[12] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ra-
machandra, Cache-oblivious algorithms, Proceedings of
the 54th Annual Symposium on Foundations of Com-
puter Science, IEEE Computer Society, Los Alamitos
(1999), 285–297.

[13] G. H. Gonnet and J. I. Munro, Heaps on heaps, SIAM
J. Comput. 15, 4 (1986), 964–971.

[14] B. Haeupler, S. Sen, and R. E. Tarjan, Rank-pairing
heaps, SIAM J. Comput. 40, 6 (2011), 1463–1485.

[15] J. Katajainen and J. L. Träff, A meticulous analysis
of mergesort programs, Proceedings of the 3rd Italian
Conference on Algorithms and Complexity, Lecture
Notes in Computer Science 1203, Springer, Berlin/
Heidelberg (1997), 217–228.

[16] J. Katajainen and F. Vitale, Navigation piles with
applications to sorting, priority queues, and priority
deques, Nordic J. Comput. 10, 3 (2003), 238–262.

The Computer Journal, Vol. 60, No. 5, 2017

18 S. Edelkamp, A. Elmasry and J. Katajainen

[17] D. E. Knuth, Fundamental Algorithms, The Art
of Computer Programming 1, 3rd Edition, Addison
Wesley Longman, Reading (1997).

[18] D. E. Knuth, Sorting and Searching, The Art of
Computer Programming 3, 2nd Edition, Addison
Wesley Longman, Reading (1998).

[19] Z. Li and B. A. Reed, Heap building bounds,
Proceedings of the 9th International Workshop on
Algorithms and Data Structures, Lecture Notes in
Computer Science 3608, Springer, Berlin/Heidelberg
(2005), 14–23.

[20] C. J. H. McDiarmid and B. A. Reed, Building heaps
fast, J. Algorithms 10, 3 (1989), 352–365.

[21] T. Pasanen, Elementary average case analysis of
Floyd’s algorithms to construct heaps, TUCS Technical
Report No. 64, Turku Centre for Computer Science,
Turku (1996).

[22] P. Sanders and S. Winkel, Super scalar sample sort,
Proceedings of the 12th Annual European Symposium
on Algorithms, Lecture Notes in Computer Science
3221, Springer, Berlin/Heidelberg (2004), 784–796.

[23] J. Vuillemin, A data structure for manipulating priority
queues, Commun. ACM 21, 4 (1978), 309–315.

[24] I. Wegener, The worst case complexity of McDiarmid
and Reed’s variant of Bottom-Up Heapsort is less than
n logn + 1.1n, Inform. and Comput. 97, 1 (1992), 86–
96.

[25] I. Wegener, Bottom-Up-Heapsort, a new variant of
Heapsort beating, on an average, Quicksort (if n is not
very small), Theoret. Comput. Sci. 118, 1 (1993), 81–
98.

[26] J. W. J. Williams, Algorithm 232: Heapsort, Commun.
ACM 7, 6 (1964), 347–348.

The Computer Journal, Vol. 60, No. 5, 2017

