
On the Power of Structural Violations in Priority Queues

Amr Elmasry1 Claus Jensen2 Jyrki Katajainen2

1 Department of Computer Engineering and Systems, Alexandria University
Alexandria, Egypt

2 Department of Computing, University of Copenhagen
Universitetsparken 1, 2100 Copenhagen East, Denmark

Abstract

We give a priority queue that guarantees the worst-
case cost of Θ(1) per minimum finding, insertion, and
decrease; and the worst-case cost of Θ(lg n) with at
most lg n + O(

√
lg n) element comparisons per dele-

tion. Here, n denotes the number of elements stored
in the data structure prior to the operation in ques-
tion, and lg n is a shorthand for max {1, log2 n}. In
contrast to a run-relaxed heap, which allows heap-
order violations, our priority queue relies on struc-
tural violations. By mimicking a priority queue that
allows heap-order violations with one that only al-
lows structural violations, we improve the bound on
the number of element comparisons per deletion to
lg n + O(lg lg n).

Keywords: Data structures, priority queues, binomial
queues, relaxed heaps, meticulous analysis, constant
factors

1 Introduction

In this paper we study priority queues that are ef-
ficient in the worst-case sense. A priority queue is
a data structure that stores a dynamic collection of
elements and supports the standard set of operations
for the manipulation of these elements: find -min,
insert , decrease[-key ], delete-min, and delete. We will
not repeat the basic definitions concerning priority
queues, but refer to any textbook on data structures
and algorithms [see, for instance, (Cormen, Leiserson,
Rivest & Stein 2001)].

There are two ways of relaxing a binomial queue
(Brown 1978, Vuillemin 1978) to support decrease at
a cost of O(1). In run-relaxed heaps (Driscoll, Gabow,
Shrairman & Tarjan 1988) heap-order violations are
allowed. In a min-heap, a heap-order violation means
that a node stores an element that is smaller than the
element stored at its parent. A separate structure is
maintained to keep track of all such violations. In
Fibonacci heaps (Fredman & Tarjan 1987) and thin
heaps (Kaplan & Tarjan 1999) structural violations
are allowed. A structural violation means that a node
has lost one or more of its subtrees. Kaplan & Tarjan

Partially supported by the Danish Natural Science Research
Council under contracts 21-02-0501 (project Practical data
structures and algorithms) and 272-05-0272 (project Generic
programming—algorithms and tools).

Copyright c© 2007, Australian Computer Society, Inc. This
paper appeared at Computing: The Australasian Theory Sym-
posium (CATS 2007), Ballarat, Australia. Conferences in
Research and Practice in Information Technology (CRPIT),
Vol. 65. Joachim Gudmundsson and Barry Jay, Eds. Repro-
duction for academic, not-for profit purposes permitted pro-
vided this text is included.

(1999) posed the question whether these two appar-
ently different notions of a violation are equivalent in
power.

Asymptotically, the computational power of the
two approaches is known to be equivalent since fat
heaps can be implemented using both types of viola-
tions (Kaplan & Tarjan 1999). To facilitate a more
detailed comparison of data structures, it is natural
to consider the number of element comparisons per-
formed by different priority-queue operations since
often these determine the computational costs when
maintaining priority queues. A framework for reduc-
ing the number of element comparisons performed
by delete-min and delete is introduced in a compan-
ion paper (Elmasry, Jensen & Katajainen 2004) [see
also (Elmasry, Jensen & Katajainen 2006)]. The re-
sults presented in that paper are complemented in the
present paper.

Let n denote the number of elements stored in
the data structure prior to the operation in question.
For both Fibonacci heaps (Fredman & Tarjan 1987)
and thin heaps (Kaplan & Tarjan 1999), the bound
on the number of element comparisons performed by
delete-min and delete is 2 logΦ n + O(1) in the amor-
tized sense, where Φ is the golden ratio. This bound
can be reduced to logΦ n + O(lg lg n) using the two-
tier framework described in (Elmasry 2004, Elmasry
et al. 2004) (logΦ n ≈ 1.44 lg n). For run-relaxed
heaps (Driscoll et al. 1988) this bound is 3 lg n+O(1)
in the worst case [as analysed in (Elmasry et al. 2004,
Elmasry et al. 2006)], and the bound can be im-
proved to lg n + O(lg lg n) using the two-tier frame-
work (Elmasry et al. 2004, Elmasry et al. 2006). For
fat heaps (Kaplan, Shafrir, & Tarjan 2002, Kaplan &
Tarjan 1999) the corresponding bounds without and
with the two-tier framework are 4 log3 n + O(1) and
2 log3 n+O(lg lg n), respectively (2 log3 n ≈ 1.27 lg n).

In this paper we introduce a new priority-queue
structure, named a two-tier pruned binomial queue,
which supports all the standard priority-queue op-
erations at the asymptotic optimal cost: find -min,
insert , and decrease at the worst-case cost of Θ(1);
and delete-min and delete at the worst-case cost of
Θ(lg n). We only allow structural violations, and not
heap-order violations, to the binomial-queue struc-
ture. We are able to prove the worst-case bound of
lg n + O(

√
lg n) on the number of element compari-

sons performed by delete-min and delete. Without
the two-tier framework the number of element com-
parisons would be bounded above by 2 lg n+O(

√
lg n).

In a two-tier pruned binomial queue, structural
violations are applied in a straightforward way, but
the analysis implies some room for improvement. In
an attempt to answer the question posed by Kaplan
and Tarjan, we show that the notion of structural vio-
lations is as powerful as that of heap-order violations
in the case of relaxed heaps. Accordingly, we improve
the bound on the number of element comparisons per



delete-min and delete to lg n + O(lg lg n). This is
done by mimicking a two-tier relaxed heap described
in (Elmasry et al. 2006) with a pruned version that
only allows structural violations.

2 Two-tier pruned binomial queues

We use relaxed binomial trees (Driscoll et al. 1988)
that rely on structural violations instead of heap-
order violations as our basic building blocks. The
trees, which we call pruned binomial trees, are heap-
ordered and binomial, but a node does not necessar-
ily have all its subtrees. Let τ denote the number of
trees in any collection of trees, and let λ denote the
number of missing subtrees in the entire collection
of trees. A pruned binomial queue is a collection of
pruned binomial trees where at all times both τ and
λ are logarithmic in the number of elements stored.

Analogously to binomial trees, the rank of a
pruned binomial tree is defined to be the same as
the degree of its root, which is equal to the number
of real children plus the number of lost children. For
a pruned binomial tree, we let its capacity denote the
number of nodes stored in a corresponding binomial
tree where no subtrees are missing. The total capacity
of a pruned binomial queue is the sum of the capaci-
ties of its trees. In a pruned binomial queue, there is a
close connection between the capacities of the pruned
binomial trees stored and the number representation
of the total capacity. If the number representing the
total capacity consists of digits d0, d1, up to dk−1,
the data structure stores di pruned binomial trees of
capacity 2i for each i ∈ {0, 1, . . . , k − 1}. In the num-
ber system used by us, digits di are allowed to be 0,
1, or 2. In an abstract form, a data structure that
keeps track of the trees can be seen as a counter rep-
resenting a number in this redundant number system.
To allow increments and decrements at any digit at
constant cost, we use a regular counter discussed, for
example, in (Brodal 1996, Kaplan et al. 2002).

Following the guidelines given in (Elmasry 2004,
Elmasry et al. 2004), our data structure has two
main components, an upper store and a lower store,
and both are implemented as pruned binomial queues
with some minor variations. Our objective is to im-
plement the priority queue storing the elements as
the lower store, while having an upper store forming
another priority queue that only contains pointers to
the elements stored at the roots of the trees of the
original queue. The minimum indicated by the upper
store is, therefore, an overall minimum element.

We describe the data structure in four parts. First,
we review the internals of a regular counter to be
used for maintaining the references to the trees in a
pruned binomial queue. Second, we give the details of
a pruned binomial queue, but we still assume that the
reader is familiar with a run-relaxed heap (Driscoll
et al. 1988), from which many of the ideas are bor-
rowed. Third, we show how the upper store of a two-
tier pruned binomial queue is implemented. Fourth,
we describe how a pruned binomial queue held in the
upper store has to be modified so that it can be used
in the lower store.

2.1 Guides for maintaining regular counters

Let d be a non-negative integer. In a redundant binary
system, d is represented as a sequence of digits d0, d1,

. . . , dk−1 such that d =
∑k−1

i=0 di · 2i, where d0 is the
least significant digit, dk−1 the most significant digit,
and di ∈ {0, 1, 2} for all i ∈ {0, 1, . . . , k − 1}. The
redundant binary representation of d is said to be
regular if any digit 2 is preceded by a digit 0, possibly
having a sequence of 1’s in between. A digit sequence

block
︷ ︸︸ ︷

i i-1 i-2

2 1 1 1 0

iboxes

forward pointers

digits

Figure 1: Illustration of a guide.

of the form 01α2, where α ∈ {0, 1, . . . , k − 2}, is called
a block. That is, every digit 2 must be part of a block,
but there can be digits, 0’s and 1’s, that are not part
of a block. The digit 2 that ends a block is called the
leader of that block.

Assuming that the representation of d in the re-
dundant binary system is d0, d1, . . . , dk−1, the fol-
lowing operations should be supported efficiently:

Fix up di if di = 2. Propagate the carry to the next
digit, i.e. carry out the assignments di ← 0;
di+1 ← di+1 + 1.

Increase di by one if di ∈ {0, 1}. Calculate d + 2i.

Decrease di by one if di ∈ {1, 2}. Calculate d−2i.

Note that, if di = 0, a decrement need not be sup-
ported. Also, if di = 2, an increment can be done by
fixing up di before increasing it.

In a pruned binomial queue, the data structure
keeping track of the pruned binomial trees stored can
be seen as a regular counter maintained under these
operations. Brodal (1996) described a data structure,
called a guide, that can be used to implement a regu-
lar counter such that the worst-case cost of each of
the operations is O(1). In a worst-case efficient bino-
mial queue [see, e.g. (Elmasry et al. 2004)] the root
list can be seen to represent a regular counter that
only allows increments at the digit d0. In such case,
a stack is used as a guide. A general guide is needed
to make it possible to increase or decrease any digit
at the worst-case cost of O(1). Next we briefly review
the functionality of a general guide.

To represent a counter, a resizable array is used.
In particular, a guide must be implemented in such a
way that growing and shrinking at the tail is possible
at the worst-case cost of O(1), which is achievable, for
example, by doubling, halving, and incremental copy-
ing [see also (Brodnik, Carlsson, Demaine, Munro &
Sedgewick 1999, Katajainen & Mortensen 2001)]. We
let each priority-queue operation maintain a pointer
to the last entry in use and initiate reorganization
whenever necessary. In our application, the ith en-
try of a guide stores a list of up to two references to
nodes of degree i. That is, the number of non-null
references corresponds to digit di.

In addition to a list of nodes, the ith entry stores
a forward pointer which points to the next leader dj ,
j > i, if di is part of a block. To make it possible
to destroy a block at a cost of O(1), forward pointers
are made indirect: for each digit its forward pointer
points to a box that contains the index of the corres-
ponding leader. All members of a block must point
to the same box. Furthermore, a box can be grounded
meaning that a digit pointing to it is no longer part
of a block. The data structure is illustrated in Figure
1. Initially, a counter must have the value zero, which
can be represented by a single 0 letting the forward
pointer point to a grounded box.

Let us now consider how the counter operations
can be realized.



Fix up di. There are three cases depending on the
state of di+1. If di+1 = 0 and di+1 is not part
of a block, assign di+1 ← 1 and ground the box
associated with di. If di+1 = 0 and di+1 is part
of a block, assign di+1 ← 1, ground the box as-
sociated with di, and extend the following block
to include di as its first member. If di+1 = 1,
ground the box associated with di and start a
new block having two members di and di+1.

Increase di by one if di = 0. If di is not part of a
block, increase di by one. If di is part of a block,
fix up the leader of that block. This will destroy
the block, so after this di can be increased by
one, keeping it outside a block.

Increase di by one if di = 1. If di is not part of a
block, increase di by one and immediately after-
wards fix up di. If di is part of a block, fix up
the leader of that block, increase di by one, and
fix up di. Both cases can create a new block of
length two.

Decrease di by one if di = 1. If di is not part of a
block, decrease di by one. If di is part of a block,
fix up the leader of that block, which destroys
the block, and thereafter decrease di by one.

Decrease di by one if di = 2. Ground the box as-
sociated with di and assign di ← 1.

By routine inspection, one can see that all these modi-
fications keep the counter regular. Also, in the worst
case at most two 2’s need to be fixed up per increment
and decrement.

2.2 Pruned binomial queues

A pruned binomial tree can be represented in the
same way as a normal binomial tree [see, e.g. (Cormen
et al. 2001)]; each node stores an element, a degree, a
parent pointer, a child pointer, and two sibling point-
ers. To support the two-tier framework, the nodes
should store yet another pointer to link a node in the
lower store to its counterpart in the upper store, and
vice versa. The basic tool used in our algorithms is
a join procedure [called the binomial-link procedure
in (Cormen et al. 2001)], where two subtrees of the
same rank are linked together. The inverse of a join
is called a split.

As a result of decrease, a node may loose one of its
subtrees. To technically handle the lost subtrees, we
use phantom nodes as placeholders for the subtrees
cut off. A phantom node can be treated as if it stores
an extremely large element ∞. A phantom node has
the same associated information as the other nodes;
its degree field indicates the rank of the lost subtree
and its child pointer points to the node itself to dis-
tinguish it from real nodes. A run is a maximal se-
quence of two or more neighbouring phantom nodes.
A singleton is a phantom node that is not in a run.
When two pruned subtrees rooted at phantom nodes
of the same degree are joined, one phantom node is
released and the other becomes the result of the join
and its degree is increased by one. If a phantom node
becomes a root, it is simply released.

Formally, a pruned binomial queue is defined as
follows. It is a collection of pruned binomial trees
where the number of phantom nodes is no larger than
⌈lg n⌉ + 1, n being the number of elements stored,
and the total capacity of all trees is maintained as a
regular counter. The following properties of a pruned
binomial queue, which follow from the definition, are
important for our analysis.

Lemma 1 In a pruned binomial queue storing n
elements, the rank of a tree can never be higher than
2 lg n + O(1).

Proof : Let the highest rank be k. The root of a tree
of rank k has subtrees of rank 0, 1, . . . , k− 1. In the
worst-case scenario the ⌈lg n⌉+ 1 phantom nodes are
used as placeholders for the subtrees of the highest
rank. The n elements occupy one node each, taking
up a total of at most ⌊lg n⌋ + 1 subtrees. Thus, the
highest rank k cannot be larger than 2 lg n+O(1). 2

Lemma 2 In a pruned binomial queue storing n
elements, a node can never have more than lg n +
O(
√

lg n) real children.

Proof : The basic idea of the proof is to consider a
tree whose root has k + 2 real children (k to be de-
termined), and to replace some of its actual subtrees
with phantom nodes such that:

• The number of the subtrees rooted at a phantom
node is ⌈lg n⌉+ 1.

• The number of real nodes is at most n.

• The value of k is maximized.

To maximize k, the children of the root of the chosen
tree should be real nodes. Moreover, we should use
the phantom nodes as placeholders for the largest j+1
subtrees of the children of the root, 2j−1 < n ≤ 2j ,
i.e. j = ⌈lg n⌉. The largest such subtrees are: one
binomial tree of rank k, two of rank k − 1, three of
rank k − 2, and so forth.

Let h be the largest integer satisfying 1 + 2 +
3 + ... + h ≤ j + 1. Clearly, h = Θ(

√
j). In or-

der to maximize k, the number of nodes covered

by missing subtrees culminates to
∑h

i=1 i2k−i+1 =
2k+2 − h2k−h+1 − 2k−h+2. The total capacity of the
whole tree is 2k+2 nodes, and of these at most n
can be real nodes. Now the tree can only exist if
h2k−h+1 + 2k−h+2 ≤ n. When k ≥ lg n + h, the num-
ber of the real nodes is larger than n, which means
that such tree cannot exist. 2

Lemma 3 A pruned binomial queue storing n elem-
ents can never contain more than lg n + O(

√
lg n)

trees.

Proof : The proof is similar to that of Lemma 2. 2

A run-relaxed heap (Driscoll et al. 1988) is a col-
lection of almost heap-ordered binomial trees where
there may be at most ⌊lg n⌋ heap-order violations be-
tween a node and its parent. A node is called active
if it may be the case that the element stored at that
node is smaller than the element stored at the parent
of that node. There is a close correspondence be-
tween active nodes in a run-relaxed heap and phan-
tom nodes in a pruned binomial queue. Therefore,
many of the techniques used for the manipulation of
run-relaxed heaps can be reused for the manipulation
of pruned binomial queues.

To keep track of the trees in a pruned bino-
mial queue, references to them are held in a tree
guide, in which each tree appears under its respec-
tive rank. To keep track of the phantom nodes, a
run-singleton structure is maintained as described in
(Driscoll et al. 1988), so we will not repeat the book-
keeping details here. The fundamental operations
supported by the run-singleton structure are an ad-
dition of a new phantom node, a removal of a given
phantom node, and a removal of at least one arbi-
trary phantom node. The cost of all these operations
is O(1) in the worst case.



To support the transformations used for reducing
the number of phantom nodes, when there are too
many of them, each phantom node should have space
for a pointer to the corresponding object, if any, in
the run-singleton structure. A pictorial description of
the transformations needed is given in the appendix.
For further details, we refer to the description of the
corresponding transformations for run-relaxed heaps
given in (Driscoll et al. 1988). The rationale behind
the transformations is that, when there are more than
⌈lg n⌉+ 1 phantom nodes, there must be at least one
pair of phantom nodes that root a subtree of the
same rank, or a run of two or more neighbouring
phantom nodes. When this is the case, it is possible
to apply the transformations—a constant number of
singleton transformations or run transformations—to
reduce the number of phantom nodes by at least one.
The cost of performing any of the transformations is
O(1) in the worst case. Later on, an application of the
transformations together will all necessary changes to
the run-singleton structure is called a λ-reduction.

The fact that the number of phantom nodes can
be kept logarithmic in the number of elements stored
is shown in the following lemma.

Lemma 4 Let λ denote the number of phantom
nodes. If λ > ⌈lg n⌉ + 1, the transformations can
be applied to reduce λ by at least one.

Proof : The proof is by contradiction. Let us make the
presumption that λ ≥ ⌈lg n⌉+ 2 and that none of the
transformations applies. Since none of the singleton
transformations applies, none of the singletons have
the same degree. Hence, there must be a phantom
node rooting a subtree whose rank r is at least λ− 1.
A root cannot be a phantom node, so there must be
a real node x that has this phantom node as its child.
Since none of the run transformations applies, there
are no runs. Hence, the sibling of the phantom node
must be a real node; the subtree rooted at this real
node is of rank r−1. For all i ∈ {0, 1, . . . , r − 2}, there
is at most one phantom node rooting a subtree of that
rank. These missing subtrees can cover at most 2r−1−
1 nodes. The total capacity of the subtree rooted at
node x is 2r+1 nodes, and the missing subtrees of
ranks 0, 1, . . . , r can cover at most 2r + 2r−1 − 1 of
the nodes. Hence, the subtree rooted at node x must
store at least 2r+1−2r−2r−1+1 = 2r−1+1 elements.
If λ ≥ ⌈lg n⌉+ 2, this accounts for at least 2⌈lg n⌉ + 1
elements, which is impossible since there are only n
elements. 2

2.3 Upper-store operations

The lower store contains elements and the upper store
contains pointers to the roots of the trees in the lower
store, as well as possibly pointers to some former roots
lazily deleted. The number of pointers held in the up-
per store is never larger than 2 lg n + O(

√
lg n). For

the sake of clarity, we use m to denote the size of
the upper store, and we call the pointers manipu-
lated items. Of course, in item comparisons the elem-
ents stored at the roots pointed to in the lower store
are compared. Let us now consider how the priority-
queue operations are implemented in the upper store.

To facilitate a fast find -min, a pointer to the node
storing the current minimum is maintained. When
such a pointer is available, find -min can be easily ac-
complished at a cost of O(1).

In insert , a new node is created, the given item is
placed into this node, and the least significant digit
of the tree guide is increased to get the new tree of
rank 0 into the structure. If the given item is smaller
than the current minimum, the pointer indicating the

location of the current minimum is updated to point
to the newly created node. Clearly, the worst-case
cost of insert is O(1).

A decrease is performed by reusing some of the
techniques described in (Driscoll et al. 1988). First,
the item at the given node is replaced. Second, if
the given node is not a root, the subtree rooted at
that node is detached, a phantom node is put as its
placeholder, and the detached subtree is added to the
tree guide as a new tree. Third, if the new item is
smaller than the current minimum, the pointer to the
location of the current minimum is updated to point
to the given node instead. At last, a λ-reduction is
performed, if necessary. The cost of all this work is
O(1) in the worst case.

In delete-min, there are two cases depending on
whether the degree of the root to be deleted is 0 or
not.

Case 1 The root to be deleted has degree 0. In
this case the root is released, the least signifi-
cant digit of the tree guide is decreased to re-
flect this change, and a λ-reduction is performed
once (since the difference between ⌈lg n⌉+ 1 and
⌈lg(n− 1)⌉+ 1 can be one).

Case 2 The root to be deleted has degree greater
than 0. In this case the root is released and
a phantom node is repeatedly joined with the
subtrees of the released root. More specifically,
the phantom node is joined with the subtree of
rank 0, the resulting tree is then joined with the
next subtree of rank 1, and so on until the result-
ing tree is joined with the subtree of the highest
rank. If before a join a subtree is rooted at a
phantom node, the phantom node is temporarily
removed from the run-singleton structure, and
added back again after the join. This is neces-
sary since the structure of runs may be changed
by the joins. In the tree guide a reference to the
old root is replaced by a reference to the root of
the tree created by the joins. If after these modi-
fications the number of phantom nodes is too
large, a λ-reduction is performed once or twice
(once because of the potential difference between
⌈lg n⌉+1 and ⌈lg(n− 1)⌉+1, and once more be-
cause of the new phantom node introduced).

After both cases, all roots are scanned through to up-
date the pointer pointing to the location of the current
minimum.

The computational cost of delete-min is domi-
nated by the joins and the scan, both having a cost
of O(lg m). Everything else has a cost of O(1). By
Lemma 2, repeated joins may involve lg m+O(

√
lg m)

item comparisons, and by Lemma 3, a scan visits at
most lg m + O(

√
lg m) trees, so the total number of

item comparisons is at most 2 lg m + O(
√

lg m).
If the given node is a root, delete is similar to

delete-min. If the given node is not a root, the sub-
tree rooted at that node is detached and the node is
released. The subtrees of the released node are re-
peatedly joined with a phantom node as above, after
which the detached subtree is replaced by the result-
ing tree. Due to the new phantom node, at most two
λ-reductions may be necessary to get the number of
phantom nodes below the threshold. As delete-min,
delete has the worst-case cost of O(lg m) and performs
at most 2 lg m + O(

√
lg m) item comparisons.

In addition to the above operations, it should be
possible to mark nodes to be deleted and to unmark
nodes if they reappear at the upper store before be-
ing deleted. Lazy deletions are necessary at the upper
store when, in the lower store, a join is done as a con-
sequence of an insertion, or a λ-reduction is performed



that involves the root of a tree. In both situations, a
normal upper-store deletion would be too expensive.

To support lazy deletions efficiently, we adopt the
global-rebuilding technique described in (Overmars
& van Leeuwen 1981). When the number of un-
marked nodes becomes equal to m0/2, where m0 is
the current size of the upper store, we start building
a new upper store. The work is distributed over the
forthcoming m0/4 upper-store operations (modifying
operations including insertions, decreases, deletions,
markings, and unmarkings). In spite of reorganiza-
tion, both the old structure and the new structure are
kept operational and used in parallel. New nodes are
inserted into the new structure, and old nodes being
deleted are removed from their respective structures.

In addition to the tree guide, which is used as nor-
mally, we maintain a separate buffer that can con-
tain up to two trees of rank 0. Initially, the buffer is
empty. It is quite easy to extend the priority-queue
operations to handle these extra trees of rank 0. De-
pending on the state of the buffer and the guide, every
rebuilding step does the following:

Case 1 a) In the buffer or in the guide there is a tree
of rank 0 (i.e. a node) that does not contain the
current minimum or b) there is only one node
left in the old structure. In both cases that node
is removed from the old structure. If the node is
not marked to be deleted, it is inserted into the
new structure. Otherwise, the node is released
and, in its counterpart in the lower store, the
pointer to the upper store is given the value null.

Case 2 a) In the buffer or in the guide there is no
tree of rank 0 or b) there is only one tree of rank
0 that contains the current minimum, but it is
not the only tree left in the old structure. In
both cases the tree of rank 0 (if any) is moved
from the guide to the buffer, if it is not there
already, and thereafter in the guide a tree of the
smallest rank is split into two halves. If after
the split the root of the lifted half is a phantom
node, it is released and its occurrence is removed
from the run-singleton structure. Also, if after
the split the guide contains two trees of rank 0,
one of them is moved to the buffer.

There can simultaneously be three trees of rank 0,
two in the buffer and one in the guide. This is done
in order to keep the pointer to the location of the
current minimum valid during reorganization.

It is crucial for the correctness of priority-queue
operations that the guide is kept regular all the time.
It is straightforward to see that this is the case. If
the least significant digit of the guide is non-zero, it
can never be part of a block. Thus, a decrement does
not involve any joins and an increment can involve
at most one join. Additionally, observe that when
splitting a tree of the smallest rank the corresponding
decrement at the guide can be done without any joins.
(If di = 1 and di is part of a block, the block can just
be made one shorter. A new block of length two is
created unless a tree is moved to the buffer.)

With this strategy, a tree of size m0 can be emptied
by performing at most c · m0 rebuilding steps, for
a positive integer c, provided that reorganization is
spread over at most ⌈d ·m0⌉ modifying operations, for
a non-negative real number d. The following lemma
shows that, for d = 1/4 and for any m0 > 0, c = 4
will be a valid choice.

Lemma 5 To empty a pruned binomial queue storing
n elements, at most 2n+ ⌈lg n⌉+2N rebuilding steps
have to be performed, provided that reorganization is
spread over N modifying operations.

Proof : Let us perceive the given pruned binomial
queue as a graph having k nodes and ℓ edges, each
connecting a node to its parent. Since the given data
structure is a forest of trees, the graph has at most
k − 1 edges. In the beginning, the pruned binomial
queue has n real nodes and at most ⌈lg n⌉+ 1 phan-
tom nodes. Therefore, for the corresponding graph,
k ≤ n + ⌈lg n⌉+ 1 and ℓ ≤ n + ⌈lg n⌉. We let n and ℓ
vary during reorganization, and note that the process
terminates when n = 0 and ℓ = 0.

To see that each rebuilding step makes progress,
observe that at each step either a real node is re-
moved, meaning that n becomes one smaller, or a
tree is split, meaning that ℓ becomes one smaller.
That is, to ensure progress it is important that the
associated decrements at the tree guide do no involve
any joins. Hence, after at most 2n+ ⌈lg n⌉ rebuilding
steps the data structure must be empty, provided that
no other operations are executed. However, the data
structure allows priority-queue operations, including
markings and unmarkings, to be executed simultane-
ously with reorganization, but only operations creat-
ing new real nodes (insert) or modifying the linkage of
nodes (insert , decrease, delete-min, and delete) can
interfere with reorganization.

Of the modifying operations, only insert creates
new real nodes. When the least significant digit of the
tree guide is increased, at most one join will be neces-
sary. That is, insert can increase both n and ℓ by one.
A decrease may introduce a new phantom node, but
an old edge is reused when connecting this phantom
node to the structure. When the detached subtree is
made into a separate tree, an increment at the tree
guide may involve up to two joins, meaning that ℓ is
increased by at most two. A deletion may introduce
a new phantom node in place of the removed node,
and the linkage between nodes may change, but the
total number of edges remains the same or becomes
smaller due to joins involving missing subtrees. It
may happen that the node to be deleted roots a tree
of rank 0, but in this case no joins are necessary in
connection with a decrement done at the tree guide.
The removal of a real node is just advantageous for
reorganization. After decrease, delete-min, or delete,
one or two λ-reductions may be done, but these will
reduce the number of phantom nodes and will not in-
crease the number of edges. (For run transformation
I—see the appendix—an increment at the tree guide
may involve up to two joins, but this is compensated
for the two edges discarded.) 2

In connection with each of the next at most m0/4
upper-store operations, 4 ·c rebuilding steps are to be
executed. When the old structure becomes empty, it
is dismissed and thereafter the new structure is used
alone. During the m0/4 operations at most m0/4
nodes can be deleted or marked to be deleted, and
since there were m0/2 unmarked nodes in the begin-
ning, at least half of the nodes are unmarked in the
new structure. Therefore, at any point in time, we
are constructing at most one new structure. We em-
phasize that each node can only exist in one structure
and whole nodes are moved from one structure to the
other, so that pointers from the outside remain valid.

A tree of rank 0, which does not contain the cur-
rent minimum or is the only tree left, can be detached
from the old pruned binomial queue at a cost of O(1).
Similarly, a node can be inserted into the new pruned
binomial queue at a cost of O(1). A marked node
can also be released and its counterpart updated at
a cost of O(1). Also, a split has the worst-case cost
of O(1). From these observations, it follows that re-
organization only increases the cost of all modifying
operations by an additive term of O(1).

Each find -min has to consult both the old struc-



ture and the new structure, but its worst-case cost
is still O(1). The cost of markings and unmarkings
is clearly O(1), even if they take part in reorgani-
zation. If mu denotes the total number of unmarked
nodes currently stored, at any point in time, the total
number of nodes stored is Θ(mu), and during reorga-
nization m0 = Θ(mu). In both structures, the effi-
ciency of delete-min and delete depends on their cur-
rent sizes which must be O(mu). Since delete-min
and delete are handled normally, except that they
may take part in reorganization, each of them has
the worst-case cost of O(lg mu) and performs at most
2 lg mu + O(

√
lg mu) item comparisons.

2.4 Lower-store operations

Since the lower store is also a pruned binomial queue,
most parts of the algorithms are similar to those al-
ready described for the upper store. In the lower
store, find -min relies on find -min provided by the up-
per store. An insertion is performed in the same way
as in the upper store, but a counterpart of the new
root is also inserted into the upper store. In connec-
tion with each join (which may be necessary when an
entry in the tree guide is increased) the pointer point-
ing to the root of the loser tree is lazily deleted from
the upper store. Also, decrease is otherwise identical
to that provided by the upper store, but the insertion
of the cut subtree and the λ-reduction may gener-
ate lazy deletions at the upper store. Additionally, it
may be necessary to insert a counterpart for the cut
subtree into the upper store. If decrease involves a
root, this operation is propagated to the upper store
as well. Minimum deletion and deletion are also simi-
lar to the operations provided by the upper store, but
the pointer to the old root might be deleted from the
upper store and a pointer to the new root might be
added to the upper store. In a λ-reduction, it may
be necessary to move a tree in the tree guide, which
may involve joins that again generate lazy deletions.
In connection with decrease, delete-min, and delete,
it is not always necessary to insert a counterpart of
the created root into the upper store, because the
counterpart exists but is marked. In this case, the
counterpart is unmarked and decrease is invoked at
the upper store if unmarking was caused by decrease.

Because at the upper store at most O(1) inser-
tions, decreases, markings, and unmarkings are done
per lower-store operation, and because each of these
operations can be carried out at the worst-case cost
of O(1), these upper-store operations do not affect
the resource bounds in the lower store, except by an
additive term of O(1). The main advantage of the
upper store is that both in delete-min and delete
the scan of the roots is avoided. Instead, an old
pointer is possibly removed from the upper store and
a new pointer is possibly inserted into the upper
store. By Lemma 3, the lower store holds at most
lg n + O(

√
lg n) trees, and because of global rebuild-

ing the number of pointers held in the upper store can
be doubled. Therefore, the size of the upper store is
bounded by 2 lg n + O(

√
lg n). The upper-store op-

erations increase the cost of delete-min and delete in
the lower store by an additive term of O(lg lg n).

The following theorem summarizes the result of
this section.

Theorem 1 Let n be the number of elements stored
in the data structure prior to each priority-queue op-
eration. A two-tier pruned binomial queue guaran-
tees the worst-case cost of O(1) per find -min, insert,
and decrease; and the worst-case cost of O(lg n) with

at most lg n + O(
√

lg n) element comparisons per
delete-min and delete.

3 Mimicking heap-order violations

The analysis of the two-tier pruned binomial queues
reveals (cf. the proof of Lemma 2) that phantom
nodes can root a missing subtree that is too large
compared to the number of elements stored. In a
run-relaxed heap, which relies on heap-order viola-
tions, this is avoided by keeping the trees binomial
at all times. In this section we show that a run-
relaxed heap (Driscoll et al. 1988) and a two-tier re-
laxed heap (Elmasry et al. 2006) can be mimicked by
another priority queue that only allows structural vio-
lations. The key observation enabling this mimicry is
that a relaxed heap would allow two subtrees of the
same rank that are rooted at violation nodes to be
exchanged without affecting the cost and correctness
of priority-queue operations.

Let Q be a priority queue that has a binomial
structure and relies on heap-order violations. We
mimic Q with another priority queue Q′ which re-
lies on structural violations. A crucial difference be-
tween Q and Q′ is that, if in Q a subtree is rooted
at a violation node, in Q′ the corresponding subtree
is detached from its parent and the place of the root
of the detached subtree is taken by a phantom node.
All cut subtrees are maintained in a shadow structure
that consists of a resizable array where the rth entry
stores a pointer to a list of cut subtrees of rank r.
While performing different priority-queue operations,
we maintain an invariant that the number of phantom
nodes of degree r is the same as the number of trees
of rank r in the shadow structure. Otherwise, Q′ has
the same components as Q:

• The main structure contains the trees whose
roots are not violation nodes.

• The upper store consists of a single pointer or
another priority queue storing pointers to nodes
held in the main structure and the shadow struc-
ture.

• The run-singleton structure stores references to
phantom nodes held in the main structure or in
the shadow structure. That is, the run-singleton
structure is shared by the two other structures.

In general, all priority-queue operations are exe-
cuted as for a pruned binomial queue, but now we en-
sure that the shadow invariant is maintained. When
two missing subtrees of rank r—represented by phan-
tom nodes of degree r—are joined, one of the phantom
nodes is released, the degree of the other phantom
node is increased by one, and in the shadow struc-
ture two trees of rank r are joined. When a phantom
node becomes a root, the phantom node is released, a
tree of the same rank is taken from the shadow struc-
ture and moved to the main structure, and the root
of the moved tree is given the place of the phantom
node. If a phantom node is involved in a join with
a tree rooted at a real node, the phantom node be-
comes a child of that real node, and no changes are
made in the shadow structure. To relate a tree held
in the shadow structure with the run-singleton struc-
ture, we start from a phantom node and locate a tree
of the same rank in the shadow structure using the
resizable array. Clearly, the overhead of maintaining
and accessing the shadow structure is a constant per
operation.

Because insert only involves the trees held in the
main structure, it is not necessary to consider the
trees held in the shadow structure. Also, find -min is
straightforward since it operates with the pointer(s)
available at the upper store without making any chan-
ges to the data structure. If decrease involves a root
held either in the main structure or in the shadow



structure, the change is propagated to the upper
store. Otherwise, a subtree is cut off, a phantom node
is put in the place of the root of the cut subtree, the
cut subtree is moved to the appropriate list of the re-
sizable array in the shadow structure, and the upper
store is updated accordingly.

Compared to a pruned binomial queue, a new in-
gredient is an operation borrow which allows us to
remove an arbitrary real node at a logarithmic cost
from a run-relaxed heap (Driscoll et al. 1988) and at a
constant cost from its adaptation relying on the zero-
less number representation (Elmasry et al. 2006). In
a pruned binomial queue, borrow can be implemented
in an analogous manner, but instead of a guide we use
an implementation of a regular counter, described in
(Kaplan et al. 2002), which is suited for the zero-
less number representation. In particular, in connec-
tion with a deletion it is not necessary to replace the
deleted node with a phantom node, but a real node
can be borrowed instead. This is important since a
phantom node used by a deletion would not have a
counterpart in the shadow structure. In delete, if the
borrowed node becomes the root of the new subtree
and a potential violation is introduced, the subtree
is cut off and moved to the appropriate list of the
resizable array in the shadow structure.

When the above description is combined with the
analysis of a two-tier relaxed heap given in (Elmasry
et al. 2006), we get the following theorem.

Theorem 2 Let n be the number of elements stored
in the data structure prior to each priority-queue op-
eration. There exists a priority queue that only relies
on structural violations and guarantees the worst-case
cost of O(1) per find -min, insert, and decrease; and
the worst-case cost of O(lg n) with at most lg n +
O(lg lg n) element comparisons per delete-min and
delete.

4 Conclusions

We gave two priority queues that support decrease
and rely on structural violations. For the first priority
queue, we allow structural violations in a straightfor-
ward manner. This priority queue achieves the worst-
case bound of lg n+O(

√
lg n) element comparisons per

deletion. For the second priority queue, we only allow
structural violations in a weaker manner by keeping
an implicit relation between the cut subtrees and the
holes left after the cuts. This priority queue achieves
lg n + O(lg lg n) element comparisons per deletion.

Though we were able to achieve better bounds
with the latter approach, the difference was only in
the lower-order terms. It is still interesting whether
the two types of violations, heap-order violations
and structural violations, are in a one-to-one cor-
respondence or not. Another interesting question is
whether it is possible or not to achieve a bound of
lg n + O(1) element comparisons per deletion, when
we allow decrease. Note that the worst-case bound of
lg n+O(1) is achieved in (Elmasry et al. 2004), when
decrease is not allowed.

Appendix

In this appendix, a pictorial description of the trans-
formations applied in a λ-reduction is given. In a
singleton transformation two singletons x and y are
given, and in a run transformation the last phantom
node z of a run is given. In the following only the
relevant nodes for each transformation are drawn, all
phantom nodes are drawn in grey, and element [p] de-
notes the element stored at node p.

Singleton transformation I Both x and y are the
last children of their parents p and q, respec-
tively. Name the nodes such that element [p] 6>
element [q]. Observe that this transformation
works even if x and/or y are part of a run.

f

p

Bk

x

Bk

g

q

Bk

y

Bk

f

p

Bk

q

Bk

g

Bk+1

Singleton transformation II The parent of y is
the right sibling of x, and y is the last child of its
parent.

p

Bk

x

Bk

q

Bk

y

Bk

p

Bk

Bk+1

q

Bk



Singleton transformation III The given node x is
not the last child of its parent and the last child
of the right sibling of x is not a phantom node.

p

Bk

x

Bk

s

Bk

c

Bk

p

Bk x

Bk

s

Bk

c

Bk

Run transformation I The given node z is the last
child of its parent. After the transformation the
earlier subtree rooted at the parent of z is seen
as a separate tree.

g

p

Bk−1

Bk−1

z

Bk

g

Bk+1

p

Bk−1

Run transformation II The given node z is not
a last child. This transformation works even if
some children of the right sibling of z are phan-
tom nodes.

p

Bk−1

Bk−1

z

Bk

s

Bk−1

c

Bk−1

d

Bk

p

Bk−1

c

Bk−1

d

Bk

s

Bk−1

Bk−1

z

Bk

References

Brodal, G. S. (1996), Worst-case efficient prior-
ity queues, in ‘Proceedings of the 7th An-
nual ACM-SIAM Symposium on Discrete Algo-
rithms’, ACM/SIAM, pp. 52–58.

Brodnik, A., Carlsson, S., Demaine, E. D., Munro,
J. I. & Sedgewick, R. (1999), Resizable arrays in
optimal time and space, in ‘Proceedings of the
6th International Workshop on Algorithms and
Data Structures’, Vol. 1663 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 37–48.

Brown, M. R. (1978), ‘Implementation and analysis
of binomial queue algorithms’, SIAM Journal on
Computing 7(3), 298–319.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. &
Stein, C. (2001), Introduction to Algorithms, 2nd
edn, The MIT Press.

Driscoll, J. R., Gabow, H. N., Shrairman, R. & Tar-
jan, R. E. (1988), ‘Relaxed heaps: An alternative
to Fibonacci heaps with applications to paral-
lel computation’, Communications of the ACM
31(11), 1343–1354.

Elmasry, A. (2004), Layered heaps, in ‘Proceedings
of the 9th Scandinavian Workshop on Algorithm
Theory’, Vol. 3111 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 212–222.



Elmasry, A., Jensen, C. & Katajainen, J. (2004), A
framework for speeding up priority-queue oper-
ations, CPH STL Report 2004-3, Department of
Computing, University of Copenhagen. Avail-
able at http://cphstl.dk.

Elmasry, A., Jensen, C. & Katajainen, J. (2006),
Two-tier relaxed heaps, in ‘Proceedings of the
17th International Symposium on Algorithms
and Computation’, Vol. 4288 of Lecture Notes
in Computer Science, Springer-Verlag, pp. 308–
317.

Fredman, M. L. & Tarjan, R. E. (1987), ‘Fibonacci
heaps and their uses in improved network op-
timization algorithms’, Journal of the ACM
34(3), 596–615.

Kaplan, H., Shafrir, N., & Tarjan, R. E. (2002), Meld-
able heaps and Boolean union-find, in ‘Proceed-
ings of the 34th Annual ACM Symposium on
Theory of Computing’, ACM, pp. 573–582.

Kaplan, H. & Tarjan, R. E. (1999), New heap data
structures, Technical Report TR-597-99, De-
partment of Computer Science, Princeton Uni-
versity.

Katajainen, J. & Mortensen, B. B. (2001), Expe-
riences with the design and implementation of
space-efficient deques, in ‘Proceedings of the 5th
International Workshop on Algorithm Engineer-
ing’, Vol. 2141 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, pp. 39–50.

Overmars, M. H. & van Leeuwen, J. (1981), ‘Worst-
case optimal insertion and deletion methods for
decomposable searching problems’, Information
Processing Letters 12(4), 168–173.

Vuillemin, J. (1978), ‘A data structure for manipu-
lating priority queues’, Communications of the
ACM 21(4), 309–315.


