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Abstract. In this paper we introduce two efficient priority queues. For
both, insert requires O(1) amortized time and extract-min O(lgn) worst-
case time including at most lgn+O(1) element comparisons, where n is
the number of elements stored. One priority queue is based on a weak
heap (array-based) and the other on a weak queue (pointer-based). In
both, the main idea is to temporarily store the inserted elements in a
buffer, and once it is full to move its elements to the main queue using an
efficient bulk-insertion procedure. By employing the new priority queues
in adaptive heapsort, we guarantee, for several measures of disorder, that
the formula expressing the number of element comparisons performed by
the algorithm is optimal up to the constant factor of the high-order term.
We denote such performance as constant-factor optimality. Unlike some
previous constant-factor-optimal adaptive sorting algorithms, adaptive
heapsort relying on the developed priority queues is practically workable.
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1 Introduction

A sorting algorithm is adaptive if it changes its performance according to the pre-
sortedness within the input. When sorting n elements, the running time of such
algorithm is O(n) for sequences that are sorted or almost sorted, and O(n lg n)
for sequences that have a high degree of disorder. It is important to note that
such algorithms do not know in advance about the amount of existing disorder.

In the literature, several measures of disorder that characterize the input
sequence have been considered [18]. An adaptive sorting algorithm is said to
be asymptotically optimal, or simply optimal, if its running time asymptotically
matches the lower bound derived using the number of input elements and the
amount of disorder as parameters. In this paper we focus on a stronger form of op-
timality. We call an asymptotically-optimal algorithm constant-factor-optimal, if
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the number of element comparisons performed matches the information-theoretic
lower bound up to the constant factor hidden behind the big-Oh notation, i.e. the
constant factor multiplied by the high-order term.

Some of the known measures of disorder are the number of oscillations
Osc [15], the number of inversions Inv [14], the number of runs Runs [14], the
number of blocks Block [3], and the measures Max , Exc and Rem [3]. Some
measures dominate the others: every Osc-optimal algorithm is Inv optimal and
Runs optimal; every Inv -optimal algorithm is Max optimal [15]; and every Block -
optimal algorithm is Exc optimal and Rem optimal [3]. Natural mergesort, de-
scribed by Knuth [14, Section 5.2.4], is an example of an adaptive sorting algo-
rithm that is constant-factor-optimal; this is with respect to the measure Runs.

For a sequence X = 〈x1, x2, . . . , xn〉, the number of inversions is the number
of pairs of elements that are in the wrong order, i.e. Inv(X) = |{(i, j) | 1 ≤ i <
j ≤ n and xi > xj}| [14, Section 5.1.1]. An optimal algorithm with respect to the
measure Inv sorts a sequenceX inΘ(n lg

(
Inv(X)/n

)
+n) time. The optimality is

implied by the information-theoretic lower bound Ω(n lg
(
Inv(X)/n

)
+n) known

for the number of element comparisons performed by any sorting algorithm with
respect to the parameters n and Inv [12]. A constant-factor-optimal algorithm
should perform at most n lg

(
Inv(X)/n

)
+O(n) element comparisons.

Several adaptive sorting algorithms are known to be asymptotically opti-
mal with respect to the measure Inv . The known approaches are inspired by
insertionsort [7, 8, 12, 19, 20, 23], quicksort [16], mergesort [8, 21], or heapsort [6,
15]. However, only a few of the known algorithms are constant-factor-optimal;
these are the insertionsort-based and mergesort-based algorithms of Elmasry and
Fredman [8], and the heapsort-based algorithm of Levcopoulos and Petersson [15]
when implemented with the multipartite priority queue of Elmasry et al. [10].
Most of these algorithms are complicated and have never been implemented.

Adaptive heapsort [15] is optimal with respect to all the aforementioned mea-
sures of disorder. We recall the description and analysis of adaptive heapsort in
Section 2. In this paper we present two new realizations of adaptive heapsort.
Our main motivation is to use, instead of a worst-case efficient priority queue
[10], a simpler priority queue that can support insert in O(1) amortized time and
extract-min in O(lg n) worst-case time including at most lg n+O(1) element com-
parisons. From these bounds and the analysis given in [15], the constant-factor
optimality follows for the following measures of disorder: Osc, Inv , Runs, and
Max . Our main contribution is to present two priority queues with the required
performance guarantees. The first priority queue improves over a weak heap (an
array-based priority queue described in the context of sorting by Dutton [4] and
further analysed by Edelkamp and Wegener [5]). We modify and analyse this pri-
ority queue in Section 3. The second priority queue improves over a weak queue
(a binomial queue implemented using binary trees as suggested by Vuillemin
[24]). We modify and analyse this priority queue in Section 4. The simple—but
powerful—tool we used in both data structures is a buffer, into which the new
elements are inserted. When the buffer becomes full, all its elements are moved
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to the main queue. In accordance, for both priority queues, we give an efficient
bulk-insertion procedure.

We demonstrate the effectiveness of our approach by comparing the new
realizations to the best implementations of known efficient sorting algorithms
(splaysort [20] and introsort [22]). Our experimental settings, measurements,
and outcomes are discussed in Section 5.

2 Adaptive Heapsort

In this section we describe the basic version of adaptive heapsort [15] and sum-
marize the analysis of its performance.

The algorithm begins by building the Cartesian tree [25] for the input X =
〈x1, . . . , xn〉. The root of the Cartesian tree stores xk = min{x1, . . . , xn}, the left
subtree of the root is the Cartesian tree for 〈x1, . . . , xk−1〉, and the right subtree
of the root is the Cartesian tree for 〈xk+1, . . . , xn〉. Such a tree can be built in
O(n) time [11] by scanning the input in order and inserting each element xi into
the existing tree as follows. The nodes along the right spine of the tree (the path
from the root to the rightmost leaf) are traversed bottom up, until a node with
an element xj that is not larger than xi is found. In such case, the right subtree
of the node of xj is made the left subtree of the node of xi, and the node of xi is
made the right child of the node of xj . If xi is smaller than all the elements on
the right spine, the whole tree is made the left subtree of the node of xi. This
procedure requires at most 2n− 3 element comparisons [15].

The algorithm proceeds by moving the smallest element at the root of the
Cartesian tree into a priority queue. The algorithm then continues by repeatedly
outputting and deleting the minimum from the priority queue. After each dele-
tion, the elements at the children of the Cartesian-tree node corresponding to
the deleted element are inserted into the priority queue. As for the priority-queue
operations, n insert and n extract-min operations are performed. But, the heap
will be small if the input sequence has a high amount of existing order.

The following improvement to the algorithm [15] is both theoretically and
practically effective; even though, in this paper, it only affects the constant in the
linear term. Since at least bn/2c of the extract-min operations are immediately
followed by an insert operation (deleting a node that is not a leaf of the Cartesian
tree must be followed by an insertion), every such extract-min can be combined
with the following insert . This can be implemented by replacing the minimum of
the priority queue with the new element and thereafter reestablishing the heap
properties. Accordingly, the cost for half of the insertions will be saved.

The worst-case running time of the algorithm is O(n lg
(
Osc(X)/n

)
+ n) =

O(n lg
(
Inv(X)/n

)
+ n) [15]. For a constant β, the number of element com-

parisons performed is βn lg
(
Osc(X)/n

)
+ O(n) = βn lg

(
Inv(X)/n

)
+ O(n).

Levcopolous and Petersson suggested using a binary heap [26], which results in
β = 3 (can be improved to β = 2.5 by combining extract-min and insert when-
ever possible). By using a binomial queue [24], we get β = 2. By using a weak
heap [4], we get β = 2 (can be improved to β = 1.5 by combining extract-min
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and insert). By using the complicated multipartite priority queue [10], we in-
deed get the optimal β = 1. The question then arises whether we can achieve the
constant-factor optimality, i.e. β = 1, and in the meantime ensure practicality!

In addition to the priority queue, the storage required by the algorithm is 2n
extra pointers for the Cartesian tree. (We need not keep parent pointers since,
during the construction, on the right spine of the tree we can temporarily revert
each right-child pointer to point to the parent.) We also need to store the n
elements inside the nodes of the Cartesian tree, either directly or indirectly.

3 Weak Heaps with Bulk Insertions

A weak heap [4] is a binary tree, where each node stores an element. A weak heap
is obtained by relaxing the requirements of a binary heap [26]. The root has no
left child, and the leaves are found at the last two levels only. The height of a
weak heap that has n elements is therefore dlg ne + 1. The weak-heap property
enforces that the element stored at a node is not larger than all the elements
stored in the right subtree of that node. In our implementation, illustrated in
Fig. 1, besides the element array a an array r of reverse bits is used, i.e. ri ∈ {0, 1}
for i ∈ {0, . . . , n−1}. We use ai to refer to either the element at index i of array
a or to a node in the corresponding tree structure. A weak heap is laid out such
that, for ai, the index of its left child is 2i + ri, the index of its right child is
2i + 1 − ri, and (assuming i 6= 0) the index of its parent is bi/2c. Using the
fact that the indices of the left and the right children of ai are exchanged when
flipping ri, subtrees can be swapped in constant time by setting ri ← 1− ri.

The distinguished ancestor of ai, i 6= 0, is the parent of ai if ai is a right
child, and the distinguished ancestor of the parent of ai if ai is a left child. We
use d -ancestor(i) to denote the index of such ancestor. The weak-heap property
enforces that no element is smaller than that at its distinguished ancestor.

To insert a new element e, we first add e to the next available array entry,
making it a leaf in the heap. To reestablish the weak-heap property, as long
as e is smaller than the element at its distinguished ancestor, we swap the two

a)

0 1 2 3 4 5 6 7 8 9 10 1211

10 47 49 53 46 75 80 26 42128 127

minbufferminheap

b)
0

1

76 5 4

23

910 8

26

8

2710

12

4746 4953

8075

Fig. 1. A weak heap of size 11 and a buffer of size 2: a) the array representation and
b) the corresponding tree representation of the weak heap; the nodes, for which the
reverse bits are set, are highlighted.
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elements and repeat this for the new location of e. It follows that insert requires
O(lg n) time and involves at most dlg ne element comparisons.

The subroutine link combines two weak heaps into one weak heap conditioned
on the following settings. Let ai and aj be two elements in a weak heap, such
that ai is not larger than all the elements in the left subtree of aj . Conceptually,
aj and its right subtree form a weak heap, while ai and the left subtree of aj
form another weak heap. (Note that ai could be at any location of the array.) If
aj < ai, the subroutine link swaps the two elements and flips rj ; otherwise it does
nothing. As a result, aj will not be larger than any of the elements in its right
subtree, and ai will not be larger than any of the elements in the subtree rooted
at aj . All in all, link requires O(1) time and involves one element comparison.

To perform extract-min, the element stored at the root of the weak heap is
swapped with that stored at the last occupied array entry. To restore the weak-
heap property, repeated link operations are performed that involve the current
root of the weak heap; the details follow. The last node on the left spine (the
path from a node to the leftmost leaf) of the right child of the root is identified.
Starting from the child of the root, this is done by repeatedly traversing left
children until reaching a node that has no left child. The path from this node
to the child of the root is traversed upwards, and link operations are repeatedly
performed between the root of the weak heap and the nodes along this path. The
correctness of the extract-min operation follows from the fact that, after each
link , the element at the root of the heap is not larger than all the elements in
the left subtree of the node to be considered in the next link . Thus, extract-min
requires O(lg n) time and involves at most dlg ne element comparisons.

The cost of insert can be improved to an amortized constant. The key idea is
to use a buffer that supports constant-time insertion. The buffer can be imple-
mented as a resizable array. Additionally, a pointer to the minimum element in
the buffer is maintained. The maximum size of the buffer is set to dlg ne, where n
is the total number of elements stored. A new element is inserted into the buffer
as long as its size is below the threshold. Once the threshold is reached, a bulk
insertion is performed by moving all the elements of the buffer to the weak heap.
For the extract-min operation, the minimum of the buffer is compared with the
minimum of the weak heap, and accordingly the operation is performed either
in the buffer or in the weak heap. Deleting the minimum of the buffer is done by
removing the minimum and scanning the buffer to determine the new minimum.
Almost matching the bounds for the weak heap, deleting the minimum of the
buffer requires O(lg n) time and involves at most dlg ne−2 element comparisons.
Thus, extract-min involves at most dlg ne+ 1 element comparisons.

Let us now consider how to perform a bulk insertion in O(lg n) time (see
Fig. 2). First, we move the elements of the buffer to the next available entries
of the array that stores the weak heap. The main idea is to reestablish the
weak-heap property bottom-up level-by-level. Starting with the inserted nodes,
for each node we link its distinguished ancestor to it. We then consider the
parents of these nodes on the next upper level, and for each parent we link its
distinguished ancestor to it, restoring the weak-heap property up to this level.
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input: a: array of elements, r: array of bits, buffer : array of elements
right ← size(a) + size(buffer)− 1
left ← max{size(a), bright/2c}
while size(buffer) > 0

size(a)++
a[size(a)− 1]← buffer [size(buffer)− 1]
size(buffer)--
size(r)++
r[size(r)− 1]← 0

while right > left + 1
for j ∈ {right , right − 1, . . . , left}

i← d-ancestor(j)
if a[j] < a[i]

swap(a[i], a[j])
r[j]← 1− r[j]

left ← bleft/2c
right ← bright/2c

for j ∈ {left , right}
while j 6= 0

i← d-ancestor(j)
if a[j] < a[i]

swap(a[i], a[j])
r[j]← 1− r[j]

j ← i

Fig. 2. The pseudo-code for bulk insertion in a weak heap.

This is repeated until the number of nodes that we need to deal with at a level
is two (or less). At this point, we switch to a more efficient strategy. For each of
these two nodes, we reestablish the weak-heap property by traversing the path
from such node towards the root. If the value of the current node x is smaller
than that at its distinguished ancestor, we link the distinguished ancestor to x.
We then repeat after setting x to be its old distinguished ancestor.

The correctness of the bulk-insertion procedure follows since, before consider-
ing the ith level, the value at any node below level i is not smaller than that
at its distinguished ancestor. Hence, the value at the distinguished ancestor of a
node x at level i is guaranteed not to be larger than the value at any node of the
left subtree of x; this ensures the validity of the link operations to be performed
at level i. Once we reach the root, the weak-heap property is valid for all nodes.

Let k be the number of elements moved from the buffer to the weak heap by
the bulk-insertion procedure. The number of element comparisons performed at
the ith iteration equals the number of link operations at the ith last level of the
weak heap, which is at most b(k − 2)/2i−1c + 2. Here, we use the fact that the
number of parents of a contiguous block of b elements in the array of a weak heap
is at most b(b−2)/2c+2. Since the number of iterations is at most dlg ne, the total

number of element comparisons is less than
∑dlgne

i=1 (1/2i−1 ·k+2) < 2k+2dlg ne.
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When k = dlg ne, the number of element comparisons is less than 4dlg ne; this
accounts for four comparisons per element in the amortized sense. Due to the
bulk insertion and the check for whether the minimum of the buffer is up to date
or not, insert involves amortized five element comparisons in total.

The running time of the bulk insertion is dominated by the localization of the
distinguished ancestors of the involved nodes. To find the distinguished ancestor
of a node, we repeatedly go to the parent and check whether the current node is
its right child or not. We call such an operation an ancestor check. We separately
consider two parts of the procedure. The first part comprises the process of
finding the distinguished ancestors for the levels with more than two involved
nodes. Recall that the total number of those nodes at the ith last level is k/2i−1+
O(1), for a total of 2k+ o(k). Among the nodes involved, at most (2k+ o(k))/2j

need j ancestor checks to get to the distinguished ancestor, where j ≥ 1. This
accounts for at most

∑
j≥1 j/2

j−1 · (k + o(k)) < 4(k + o(k)) = 4dlg ne+ o(lg n)
ancestor checks. The second part comprises two path traversals towards the
root, which involve at most 2dlg ne ancestor checks in total. We conclude that
the amortized cost accounted per element is a constant.

4 Weak Queues with Bulk Insertions

In this section we resort to a binomial queue that is implemented using binary
trees [24]; we call this variant a weak queue. This data structure is a collection
of perfect weak heaps (binomial trees in the binary-tree form), where the size of
each tree is a power of two. The binary representation of n specifies the sizes of
the perfect weak heaps that are present. A 1-bit at position r indicates that a
perfect weak heap of size 2r is present. The rank of a perfect weak heap of size
2r is r. In our implementation, illustrated in Fig. 3, every node stores a pointer
to its left child, a pointer to its right child, and (a pointer to) an element.

Two perfect weak heaps of rank r can be linked to form a perfect weak heap
of rank r + 1, by making the root that has the smaller element the root of the
resulting weak heap, the other root the right child of the new root, and the
previous right child of the new root the left child of the other root.

minqueue

4726

75

46 49

12

10

80

5342

27minbuffer

1 8

Fig. 3. A buffer of size 2 and a weak queue of size 11 (1011 in binary).
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To insert a node into a weak queue, we let the new node form a single-node
tree. This may trigger a sequence of link operations until no two trees of the
same rank exist. Still, the amortized cost per insert is a constant [24].

To perform extract-min, we scan the roots of the perfect weak heaps to find
the minimum. We then borrow the root of the smallest tree; let that root be x.
In accordance, every node on the left spine of x’s right subtree becomes the root
of a perfect weak heap, and these heaps are added to the collection. Hereafter,
we detach the root with the minimum value; let that root be y. Now every node
on the left spine of y’s right subtree is the root of a perfect weak heap. Using
repeated link operations, the node x is combined with the roots of these heaps
to create a perfect weak heap that has the same size as the heap rooted at y
before the deletion. (A link operation is performed between x and the root of
the smallest such heap, and the resulting heap is repeatedly linked with the next
larger remaining heap, and so on.) It follows that extract-min requires O(lg n)
time and involves at most 2dlg ne − 2 element comparisons.

To speed things up, we maintain prefix-minimum pointers for the roots of
the perfect weak heaps (for the origin of this idea, consult [10] and the references
therein). The prefix-minimum pointer of the root of a heap of size 2r points to
the root with the smallest value among the heaps of size 2j for j ≤ r. The overall
minimum can be located by following the prefix-minimum pointer of the root of
the largest heap. Now we have to borrow a node such that the prefix-minimum
pointers need not be updated. As before, the borrowed node is repeatedly linked
with the roots of the heaps resulting from detaching the minimum node. This
requires r element comparisons if the rank of the deleted node is r. We still
have to update the prefix-minimum pointers. The key idea is that we only need
dlg ne − r element comparisons to update the prefix-minimum pointers of the
larger heaps. Hence, extract-min involves at most dlg ne element comparisons.

If we implement insert in the normal way, we then have to update the prefix-
minimum pointers; this would require a logarithmic number of element compari-
sons. Our way out is again to rely on bulk insertions (see Fig. 4). We collect
at most dlg ne elements into a buffer, where n is the total number of elements
stored. The buffer is implemented as a circular singly-linked list, having its min-
imum first. When the buffer becomes full, we clear it by repeatedly inserting its
elements into the weak queue in the normal way, without updating the prefix-
minimum pointers. After finishing these insertions, the prefix-minimum pointers
are updated once. For the bulk insertion, an amortized analysis accounts for a
constant amortized cost per element, involving amortized two element compari-
sons. Since it is necessary to maintain the minimum of the buffer, an insertion
into the buffer involves one element comparison. This together with the bulk
insertion accounts for three element comparisons per insert .

We have to implement borrowing carefully so that it does not invalidate the
prefix-minimum pointers. While performing no element comparisons, it takes
O(lg n) time. If the buffer is non-empty, a node is borrowed from there. Other-
wise, a node is borrowed from the main queue. If the size of the smallest heap
is larger than one, the last node from the left spine of the right subtree of its
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input: Q: queue of perfect weak heaps, buffer : list of nodes
while size(buffer) > 0

x← pop(buffer)
insert(Q, x)

update-prefix -minimum-pointers(Q)

Fig. 4. The pseudo-code for bulk insertion in a weak queue. For a list, subrou-
tine pop removes and returns its last node. For a queue, subroutine insert adds
the given node to the queue and makes the necessary linkings leaving at most
one heap per rank. Subroutine update-prefix -minimum-pointers updates all the
prefix-minimum pointers as they may not be up to date after insert operations.

root is borrowed. The root and the other nodes on the left spine are added as
new roots to the main structure, and the prefix-minimum pointers associated
with each of them is set to point to the old root (rooting a heap of size one
now). Otherwise, the smallest heap is a singleton. This singleton is borrowed if
the prefix-minimum pointer of the second smallest heap does not point to it.
Otherwise, these two roots are swapped and the current singleton is borrowed.

For the extract-min operation, the minimum of the buffer is compared with
the minimum of the weak queue, and accordingly the operation is performed
either in the buffer or in the weak queue. After these modifications, extract-min
involves at most dlg ne+ 1 element comparisons.

5 Experimental Findings

We implemented two versions of adaptive heapsort, one using a weak heap and
another using a weak queue. In this section we discuss the settings and outcomes
of our performance tests. In these tests we measured the actual running time
of the programs and the number of element comparisons performed. The main
purpose for carrying out these experiments was to validate our theoretical results.

Our implementation of adaptive heapsort using a weak heap was array-based.
Each entry of the array representing the Cartesian tree stored a copy of an
element and two references to other entries in the tree. The arrays representing
the weak heap and the buffer stored references to the Cartesian tree, and a
separate array was used for the reverse bits. In total, the space usage per element
was three references, a copy of the element, and one bit. Dynamic memory
allocation was avoided by preallocating all arrays from the stack. Users should
be aware that, due to the large space requirements, the algorithm has a restricted
utility depending on the amount of memory available.

In our implementation of adaptive heapsort using a weak queue, some non-
trivial enhancements were made. First, we used two pointers per node: one point-
ing to the left child and another to the right child. As advised by Vuillemin [24],
because of the lack of parent pointers, we reverted the left-child pointers to tem-
porarily point to the parents while performing repeated linkings in extract-min.
Second, we used an array of pointers to access the roots of the trees. This array
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also infers the ranks of these roots; the nodes themselves did not store any rank
information. Third, we used the same nodes to store the pointers needed by the
Cartesian tree and the buffer. Fourth, all memory was preallocated from the
stack. In total, the space usage per node was four pointers and a copy of an
element; another O(lg n) space was used by the array of root pointers and the
array of prefix-minimum pointers. Accordingly, this implementation used even
more memory than the version employing a weak heap.

To select suitable competitors for our implementations, we consulted some
earlier research papers concerning the practical performance of inversion-optimal
sorting algorithms [9, 20, 23]. Based on this survey, we concluded that splaysort
performs well in practice. In addition, the implementation of Moffat et al. [20] is
highly tuned, practically efficient, and publicly available. Consequently, we se-
lected their implementation of splaysort as our primary competitor. In the afore-
mentioned experimental papers, splaysort has been reported to perform better
than other tree-based algorithms (e.g. AVL-sort [7]), cache-oblivious algorithms
(e.g. greedysort [1]), and partition-based algorithms (e.g. splitsort [16]).

When considering comparison-based sorting, one should not ignore quicksort
[13]. Introsort [22] is a highly tuned variant of quicksort that is known to be fast
in practice. It is based on half-recursive median-of-three quicksort, it coarsens the
base case by leaving small subproblems unsorted, it calls insertionsort to finalize
the sorting process, and it calls heapsort if the recursion depth becomes too large.
Using the middle element as a candidate for the pivot, and using insertionsort
at the back end, make introsort adaptive with respect to the number of element
comparisons (though not optimally adaptive with respect to any known measure
of disorder). Quicksort and its variants are also known to be optimally adaptive
with respect to the number of element swaps performed [2]. For these reasons,
we selected the standard-library implementation of introsort shipped with our
C++ compiler as our secondary competitor.

In the experiments, the results of which are discussed here (see Figs. 5–8), we
used 4-byte integers as input data. The results were similar for different input
sizes; for the reported experiments the number of elements was fixed to 107

and 108. We ensured that all the input elements were distinct. Integer data was
sufficient to back up our theoretical analysis. However, for other types of input
data, the number of element comparisons performed and the number of cache
misses incurred may have more significant influence on the running time.

We performed the experiments on one core of a desktop computer (model
Intel i/7 CPU 2.67 GHz) running Ubuntu 10.10 (Linux kernel 2.6.32-23-generic).
This computer had 32 KB L1 cache memory, 256 KB L2 cache memory, 8 MB
(shared) L3 cache memory, and 12 GB main memory. With such memory cap-
acity, there was no need to use virtual memory. We compiled all programs using
GNU C++ compiler (gcc version 4.4.3 with option -O3).

To generate the input data, we used two types of generators:

Repeated swapping. We started with a sorted sequence of the integers from
1 to n, and repeatedly performed random transpositions of two consecutive
elements. This generator was used to produce data with few inversions.
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Fig. 5. Repeated swapping, n = 107: CPU time used and the number of element
comparisons performed by different sorting algorithms.
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Fig. 6. Controlled shuffling, n = 107: CPU time used and the number of element
comparisons performed by different sorting algorithms.

Controlled shuffling [9]. We started with a sorted sequence of the integers
from 1 to n, and performed two types of perturbations; we call the sequences
resulting from these two phases local and global shuffles. For local shuffles, the
sorted sequence was broken into dn/me consecutive blocks each containing
m elements (except possibly the last block), and the elements of each block
were randomly permuted. For global shuffles, the sequence produced by the
first phase was broken into m consecutive blocks each containing dn/me
elements (except possibly the last block). From each block one element was
selected at random, and these elements were randomly permuted. A small
value of m means that the sequence is sorted or almost sorted, and a large
value of m means that the sequence is random. Given a parameter m, this
shuffling results in a sequence with expected Θ(n ·m) inversions.

Since in both cases the resulting sequence is a permutation of the integers from
1 to n, the number of inversions could be easily calculated as

∑n
i=1 |xi − i|/2.

The experiments showed that our realizations of adaptive heapsort perform
a low number of element comparisons. For both versions, the number of ele-
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Fig. 7. Repeated swapping, n = 108: CPU time used and the number of element
comparisons performed by different sorting algorithms.
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Fig. 8. Controlled shuffling, n = 108: CPU time used and the number of element
comparisons performed by different sorting algorithms.

ment comparisons was about the same, as already verified analytically. When
the number of inversions was small, splaysort performed about the same num-
ber of element comparisons as the two realizations of adaptive heapsort. When
the number of inversions was large, splaysort performed a few more element
comparisons than the two realizations of adaptive heapsort. In all our experi-
ments, introsort was a bad performer with respect to the number of element
comparisons; it showed very little adaptivity and came last in the competition.

As to the running time, the weak-heap version of adaptive heapsort was faster
than the weak-queue version; about 60% faster when the number of inversions
was small and about 20% faster when the number of inversions was large. The
running times of splaysort were larger than the ones of the weak-heap version
for almost all experiments. For random data, splaysort performed worst, and
adaptive heapsort could be up to a factor of 15 slower than introsort. (In our
supplementary experiments, for random data, normal heapsort was only a factor
of 2–6 slower than introsort depending on the input size.) In most experiments,
introsort was the fastest sorting method; it was only beaten by the weak-heap
version when the number of inversions was very small (less than n).
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6 Conclusions

We studied the optimality and practicality of adaptive heapsort. We introduced
two new realizations for it, which are theoretically optimal and practically work-
able. Even though our realizations outperformed the state-of-the-art implemen-
tation of splaysort, the C++ standard-library introsort was faster for most inputs,
at least on integer data. Despite decades of research, there is still a gap between
the theory of adaptive sorting and the actual computing practice.

In spite of the optimality with respect to several measures of disorder, the
high number of cache misses is not on our side. Compared to earlier implementa-
tions of adaptive heapsort, a buffer increased the locality of memory references
and thus reduced the number of cache misses incurred. Still, introsort has consid-
erably better cache behaviour. Earlier research has pointed out [9] that existing
cache-efficient adaptive sorting algorithms are not competitive. The question
arises whether constant-factor optimality with respect to the number of element
comparisons can be achieved side by side to cache efficiency.

Another drawback of adaptive heapsort is the extra space required by the
Cartesian tree. In introsort the elements are kept in the input array, and sorting is
carried out in-place. Overheads attributable to pointer manipulations, and a high
memory footprint in general, deteriorate the performance of any implementation
of adaptive heapsort. This is in particular true when the amount of disorder is
high. As to the memory requirements, we used about 4n extra words of storage
for pointers and n extra space for copies of elements. An in-place algorithm that
is optimal with respect to the measure Inv exists [17], but it is not practical.
The question arises whether the memory efficiency of adaptive heapsort can be
improved without sacrificing the optimal adaptivity.

In another extension, one should carry out experiments on data types for
which element comparisons are more expensive than other operations. We are not
far away from n lg n element comparisons when the amount of disorder is high.
(Our best bound on the number of element comparisons is n lg

(
1+Osc(X)/n

)
+

5.5n.) The question arises whether the constant factor for the linear term in the
number of element comparisons can be improved; that is, how close we can get
to the information-theoretic lower bound up to low-order terms.

Source code

The programs used in the experiments are available via the home page of the
CPH STL (http://cphstl.dk/) in the form of a PDF document and a tar file.
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