
Theoretical Informatics and Applications
Informatique Théorique et Applications

BIPARTITE BINOMIAL HEAPS

Amr Elmasry1, Claus Jensen2 and Jyrki Katajainen3

Abstract. We describe a heap data structure that supports Minimum,
Insert, and Borrow at O(1) worst-case cost, Delete at O(lgn)
worst-case cost including at most lgn + O(1) element comparisons,
and Union at O(lgn) worst-case cost including at most lgn+O(lg lgn)
element comparisons, where n denotes the (total) number of elements
stored in the data structure(s) prior to the operation. As the resulting
data structure consists of two components that are different variants of
binomial heaps, we call it a bipartite binomial heap. Compared to its
counterpart, a multipartite binomial heap, the new structure is simpler
and mergeable, still retaining the efficiency of the other operations.

AMS Subject Classification. 68P05, 68W01, 68W40.

1. Introduction

In this study we focus on the problem of constructing worst-case-efficient heaps.
We consider heaps that are composed of nodes, each node storing an element in
addition to pointers to other nodes and, if needed, some other data. We use n (m)
to denote the number of nodes stored in the larger (smaller) of the manipulated
data structure(s) prior to the operation in question, and lg n as a shorthand for
log2(max {2, n}). Furthermore, we use the term cost to denote the sum of the
machine instructions executed and element comparisons performed. In particu-
lar, we assume that the nodes are constructed and destroyed outside the data

Keywords and phrases: Data structures, heaps, numeral systems, comparison complexity.

c© EDP Sciences 2017: This is the authors’ version of the work. It is posted
here for your personal use, not for redistribution. The definitive version was published

in RAIRO—Theor. Inf. Appl. The original publication is available at http://www.

rairo-ita.org, DOI: 10.1051/ita/2017010.

1 Department of Computer Engineering and Systems, Alexandria University, Egypt; e-mail:

elmasry@alexu.edu.eg
2 The Royal Library, Copenhagen, Denmark; e-mail: cjen@kb.dk
3 Department of Computer Science, University of Copenhagen, Denmark; e-mail: jyrki@di.ku.dk

c© EDP Sciences 2017

http://www.rairo-ita.org
http://www.rairo-ita.org
mailto:elmasry@alexu.edu.eg
mailto:cjen@kb.dk
mailto:jyrki@di.ku.dk

2 ELMASRY ET AL.

structure. Consequently, in our analysis we ignore the costs attributed to memory
management. As our model of computation, we use the word RAM [14]. It would
be possible, with some modifications, to realize our data structures on a pointer
machine. However, when using the word-RAM model, the data structures and the
operations are simpler and easier to describe.

A queue is a data structure where new elements can be injected to one or
both ends, and existing elements can be ejected from the end(s). So a queue
has two doors, and sometimes one or both of these doors can be folded in both
directions. Metaphorically, a priority queue has three doors: a front door where
new elements come in, a back door where elements can get out, and a roof door
through which an element with the highest priority—without loss of generality, a
minimum element—can be accessed and removed. In particular, all three doors
can only be folded in one direction. A double-ended priority queue has the fourth
door, a floor hatch, through which an element with the lowest priority can be
accessed and removed. In fact, the priority queues presented in this paper are
more general; they are addressable, so that any given element can be extracted,
not only those accessible via the roof and back doors. Hence, we use the term
priority heap, or simply heap, rather than the term priority queue.

In technical words, a mergeable heap is a data structure which consists of a
collection of nodes and supports, inter alia, the operations:

Minimum(H): Return a pointer to the node in heap H whose element is
minimum.

Insert(H, p): Insert a node, already storing an element, referenced by pointer
p into heap H.

Borrow(H): Extract an unspecified node from heap H and return a pointer
to that node.

Delete(H, p): Extract the node referenced by pointer p from heap H.
Union(H1,H2): Move the nodes from heaps H1 and H2 into a new heap and

return a reference to it. After the operation H1 and H2 are both empty.

Of these operations, Borrow is non-standard, but its importance has been demon-
strated in several earlier papers, see e.g. [2,5,8,9,15]. Most notably, in [9], we used
several (single-ended) priority heaps to implement a double-ended priority heap.
When moving elements from one priority heap to another, efficient Borrow and
Insert operations were essential.

Naturally, a full program-library interface of a mergeable heap also provides
other operations, but in our discussion we focus on the aforementioned operations.
In most cases, the implementations of operations like Construct (which creates
an empty heap), Destroy (which dismisses an empty heap), and Size (which
returns the number of nodes stored in the given heap) are straightforward. A heap
is efficiently mergeable if the cost of Union is sublinear in the number of nodes
stored in the two involved heaps. The deletion of the node containing the minimum
element can be accomplished by invoking Minimum followed by Delete that uses
the pointer returned by Minimum as its argument. We emphasize that in this

BIPARTITE BINOMIAL HEAPS 3

study we make no attempt to efficiently support the Decrease operation (which
replaces the element at the given node with a smaller value).

From the comparison-based lower bound for sorting (see, for example, [4, Sec-
tion 8.1]), it follows that Delete has to perform at least lg n − O(1) element
comparisons, if Minimum and Insert only perform O(1) element comparisons.
Furthermore, it is known [1] that, if Union is supported at o(n) worst-case cost,
then Delete cannot be supported at o(lg n) worst-case cost.

A tree is said to be heap-ordered if its root stores the minimum element and the
same is recursively true for all the subtrees (if any) of the root. A binomial heap,
introduced by Vuillemin [17], consists of a collection of heap-ordered binomial trees
of size 2i, for some integer i ≥ 0, with at most one tree of any particular size. In
a binary representation of the counter n for the number of nodes stored, a 1-bit
at position i indicates that there is a binomial tree of size 2i present. Then the
data structure emulates a binary-number increment when carrying out Insert,
and a binary-number addition when carrying out Union. As already pointed out
by Brown [2], Insert can be performed at constant worst-case cost if one relies on
the redundant regular binary numbers [3] instead of the standard binary numbers.
We describe different implementations of binomial heaps in Section 2.

A few years ago, we introduced multipartite binomial heaps [8] and proved
that they can support Minimum, Insert, and Borrow at O(1) worst-case cost,
and Delete at logarithmic worst-case cost including at most lg n+O(1) element
comparisons. It was a long-standing open problem how to achieve these bounds,
optimal up to the constant additive terms, for the number of element compari-
sons performed by these four operations. A brief review of this data structure is
provided in Section 3.

Our main contribution in this paper is to make multipartite binomial heaps
simpler and efficiently mergeable. In their original form [8], multipartite binomial
heaps are not efficiently mergeable. The main reason for this is that, to support
Borrow at O(1) worst-case cost, the perfect structure of one of the trees is broken.
In our simplification we reduce the number of components constituting the heap
from three to two. We clearly distinguish these components, and keep the structure
of binomial trees inside the components intact. We call the resulting data structure
a bipartite binomial heap. The key idea behind the simplification is to let the two
components support Borrow directly, instead of having a separate component
for borrowing. Our data structure supports Minimum, Insert and Borrow
at constant worst-case cost, Delete at logarithmic worst-case cost including at
most lg n+O(1) element comparisons, i.e. as efficiently as a multipartite binomial
heap, and Union at logarithmic worst-case cost including at most lg n+O(lg lgn)
element comparisons. We describe this data structure in Section 4.

Many other heaps are known to achieve the same—or even better—asymptotic
bounds as the bipartite binomial heaps described in this paper. However, our
treatment is tuned for improving the constant factors involved. In Table 1 we list
the comparison complexity of heap operations for some known heaps versus the
results proved in this paper.

4 ELMASRY ET AL.

Table 1. The worst-case comparison complexity of heap oper-
ations for a bipartite binomial heap and its competitors. Here n
(m) denotes the number of elements stored in (the smaller of) the
manipulated data structure(s) prior to the operation in question.
All data structures support Minimum at O(1) worst-case cost in-
volving no element comparisons. The “–” sign means that the
operation was not discussed in the original source.

Data structure Insert Borrow Union Delete

Binomial heap [17] lgn + 1 – lgn + 1 2 lgn

Run-relaxed heapa [5] O(1) 0b lgm + O(1) 2 lgn
Fat heapa [13, 15] O(1) O(1) 1.27 lgm 2.53 lgn
Multipartite binomial heap [8] O(1) 0 – lgn + O(1)
Two-tier relaxed heapa [10] O(1) O(1) 5 lgm + O(lg lgm) lgn + O(lg lgn)
Fast mergeable heap [11] O(1) – O(1) 2 lgn + O(1)
Optimal priority heapa [12] O(1) O(1) O(1) ≈ 70 lgn
Run-relaxed weak heapa [7] O(1) 0 – 2 lgn + O(1)
Bipartite binomial heap O(1) 0 lgn + O(lg lgn) lgn + O(1)

aWithout Decrease even though it can be supported at O(1) worst-case cost.
bThe worst-case cost is logarithmic.

A bipartite binomial heap has two components: a buffer and a main store. The
purpose of the buffer is to accommodate insertions. To support Insert at O(1)
worst-case cost, the buffer is implemented as a binomial heap that emulates the
redundant regular binary system. To support Delete efficiently, the size of the
buffer is limited to O(lg n). When the buffer becomes too big, a binomial tree is
extracted from it and incrementally merged with the main store by a background
process. The main store is implemented as a binomial heap that emulates the
standard binary system, and additionally it maintains prefix-minimum pointers
for the roots of all binomial trees. The use of prefix-minimum pointers was the
key ingredient in the comparison-optimized implementation of Delete for mul-
tipartite binomial heaps [8]. To optimize Union with respect to the number of
element comparisons, we show how to efficiently add two numbers represented us-
ing the redundant regular binary system. As another byproduct we show how to
efficiently merge two binomial heaps, each accompanied with the prefix-minimum
pointers, while maintaining the prefix-minimum pointers for the resulting heap.

In the following sections, when describing our results, we start with the original
structure of a binomial heap (see [17] or [4, Exercise 19-2]) and show how to refine
this data structure stepwise until we eventually end up with the data structures
guaranteeing the claimed bounds.

To make it easier for the reader to observe that a particular piece of informationR

Take notice is important, we have put a corresponding note at the margin.

BIPARTITE BINOMIAL HEAPS 5

2. Three Variants of Binomial Heaps

The basic building block of a binomial heap is a heap-ordered binomial tree.
Vuillemin [17] mentioned other alternatives that could be used instead like a perfect
tournament tree and a perfect weak heap (the latter data structure was named
as such several years later [6]). Other variations have been proposed like relaxed
heaps [5] (that allow heap-order violations) and fat heaps [15] (that use trinomial
trees, not binomial trees). In this section we explain how the standard binomial
heaps (Section 2.1) can be modified to get the improved bounds. For this study,
two variants will be relevant: One that can support Insert at O(1) worst-case
cost (Section 2.2) and another that reduces the number of element comparisons
performed by Delete from 2 lg n to about lg n (Section 2.3). Most of this material
is folklore; the main reason for including it here is to make the paper self-contained.
However, be aware that some of our improvements are non-standard.

2.1. Standard binomial heaps

A binomial tree of rank 0 consists of a single node storing one element; for
an integer k > 0, a binomial tree of rank k comprises a node and its k binomial
subtrees of rank 0, 1, . . . , k− 1 attached to that node in this order. Among those,
we call the root of the subtree of rank 0 the smallest child and that of rank k − 1
the largest child. The size of a binomial tree is a power of two, and the rank of a
binomial tree of size 2k is k. In a computer realization of a binomial tree, we rely
on a non-standard representation (cf. [4, Section 10.4]). The children of a node
are maintained in a circular, doubly-linked list, called the child list , and each node L

Child listhas a pointer to its largest child. The largest child of a node has a pointer back
to its parent, but for the other children the parent pointers are not used. This L

Parent pointerswill give a constant-cost access to both ends of a child list and, when two lists are
concatenated, only one parent pointer needs to be updated. A non-existing parent
or child is indicated with a null pointer.

For heap-ordered binomial trees the element stored at a node is not larger than
the elements stored at the children of that node. If two heap-ordered binomial
trees have the same rank, they can be linked together by making the root that
stores the non-smaller element the largest child of the other root. We call this
linking of trees a join. Observe that a join is possible even if the ranks of the two
trees are not the same, but the resulting structure is no more binomial. A join
involves a single element comparison and has O(1) worst-case cost. We call the
reverse of a join, where the largest child of the root is detached from a tree, a split.
A split involves no element comparisons and has O(1) worst-case cost.

A binomial heap [17] is a collection of heap-ordered binomial trees. Let the
binary representation of n > 0, the number of nodes in the data structure, be
〈b0, b1, . . . , b`−1〉, where b0 is the least significant bit and b`−1 = 1 the most sig-
nificant bit. A binomial heap of size n has a binomial tree of rank j if, and only
if, bj = 1. We call the sequence 〈b0, b1, . . . , b`−1〉 the rank sequence of the roots.
Using the standard notation for regular expressions, the rank sequence respects

6 ELMASRY ET AL.

the pattern ε | (0 | 1)?1. In a computer realization of a binomial heap, we can
reuse the sibling pointers of the roots to keep the roots in a circular, doubly-linked
list, called the root list. The roots appear on the root list in increasing rank order.
In accordance, the rank of a root can be deduced from the rank sequence (that
can be kept in one word) and need not be stored in the nodes.

The Union operation resembles an addition of two binary numbers. When
adding two 1-bits at position k, in a binomial heap a join of two trees of rank k
is performed. Based on this connection and the fact that the length of the binary
representation of n is bounded by lg n+1, it follows that for two binomial heaps of
sizes m and n, m ≤ n, Union involves at most lg n + 1 element comparisons and
has O(lg n) worst-case cost. Now Insert can be viewed as a special case of Union
where an integer is increased by one. Hence, Insert involves at most lg n + 1
element comparisons and has O(lg n) worst-case cost as well. Since one of the
roots contains the minimum, Minimum involves at most lg n element comparisons
and has O(lg n) worst-case cost. Also Delete can be reduced to Union. A root
can be deleted by unlinking its subtrees and merging them with the remaining
trees. To delete a non-root node, that node is repeatedly swapped with its parent
until it becomes a root, and the root is deleted as above. Observe that even though
we can get to the parent only via the largest child and we can stop the traversal
first after reaching the root of the largest tree, the length of the path traversed
is still logarithmic. Thus, Delete involves at most lg n element comparisons and
has O(lg n) worst-case cost.

Another way of implementing Delete is to utilize borrowing [2,5,8]. To realizeR

Better Delete Borrow, we detach the root of the smallest tree, concatenate its child list with
the rest of the root list, and return a pointer to the detached root. Clearly, a
constant number of pointers need to be updated by this procedure and Borrow
has O(1) worst-case cost. To realize Delete of a node that is different from the
borrowed node, we first detach the node to be deleted. Starting with the borrowed
node and the subtrees of the deleted node, by repeatedly joining the smallest two
subtrees, we end up with a combined tree that is of the same size as the subtree
rooted at the deleted node. The root of the combined tree is attached in place
of the deleted node. To maintain the heap order, the value at the root of the
combined tree is compared with that of its parent and the two nodes are swapped
if necessary. If the nodes are swapped, we compare the value of the new parent
with its parent, and repeat the process until the heap order is restored. The salient
feature of borrow-based Delete is that it only breaks the structure of the smallest
binomial tree, even though Borrow can add several new trees to the root list.

To speed up Minimum, a simple idea [17] is to maintain a pointer to the node
storing the minimum. Hereafter Minimum has O(1) worst-case cost and performs
no element comparisons. Insert and Union would need one additional element
comparison to keep the minimum pointer up to date. Also Borrow must beR

Fast Borrow adjusted since we do not want to update the minimum pointer if it points to the
root of the smallest tree. Let x be the root of the smallest tree, y the single-node
child of x if any, and z the root of the second-smallest tree if any. If the minimum
is at x, the manoeuvre performed is as follows.

BIPARTITE BINOMIAL HEAPS 7

(1) If y exists: Swap x and y, detach y from the root list and its children,
concatenate the child list of y with the rest of the root list, and borrow y.

(2) If y does not exist and z exists: Swap x and z, detach z from the root list,
and borrow z.

(3) If neither y nor z exists: Make the root list empty, set the minimum pointer
to null, and borrow x.

The consequence of speeding up Minimum is more significant for Delete since,
when the current minimum is deleted, the work normally done by Minimum,
i.e. the scan over all roots, has to be done in Delete to update the minimum
pointer. This increases the bound on the number of element comparisons for
Delete from lg n to 2 lg n.

A detailed description of binomial heaps, their properties and operations (in-
cluding the implementation details), can be found in many textbooks on algorithms
and data structures; Vuillemin’s paper [17] is also a recommended reading.

2.2. Binomial heaps with a powerful numeral system

As a consequence of keeping the rank sequence of the roots in the form of a
standard binary number, Insert could have logarithmic cost due to carry prop-
agation. It is well known that, if we repeatedly increase a binary counter by one
starting from zero, at most two bit flips are done per increment in the amortized
sense (see, for example, [4, Chapter 17]). By relying on a more powerful numeral
system, this amortized bound can be achieved in the worst case. For example,
we could use a redundant regular binary system [3]. For such a system, any non- L

Regular binary
system

empty string complies with the regular expression (0 | 1 | 01?2)?(1 | 01?2). Hereby,
there can be up to two binomial trees per rank. Let dj be the jth digit within the
rank sequence of the roots. The basic primitive used by the operations is a fix in
which, if dj = 2, we set dj ← 0 and dj+1 ← dj+1 + 1. Note that a fix does not
change the value of a number. For a binomial heap, a fix corresponds to a join.

In a computer realization of the rank sequence, we let each node store its rank
explicitly and use a stack to record where in the rank sequence there is a 2. More
precisely, the stack stores pointers to the positions in the root list where there
are two consecutive binomial trees of the same rank. We use a stack since, when
several joins are possible, preference is given to smaller ranks. Hence, the two
trees to be joined, if any, can be found by accessing the top of the stack.

When the redundant regular binary system is in use, in connection with each
Insert, a new node is added to the collection of trees, and one 2 is processed
forward by a fix, meaning that a single join is executed. For a proof that this
suffices to keep the representation regular, an interested reader is referred to [3].
It may also be necessary to update the minimum pointer. Therefore, Insert
involves at most two element comparisons and has O(1) worst-case cost.

In Borrow, after enforcing that the minimum pointer is not pointing to the
node being borrowed, we detach the root of the smallest tree and move its subtrees
to the collection of binomial trees. This action retains the regularity of the number
representation and does not introduce any new 2’s. Still, it is necessary to pop the

8 ELMASRY ET AL.

top of the stack if the first non-zero digit of the rank sequence was a 2. In borrow-
based Delete, the number representation does not change after borrowing.

For Union a more careful treatment is needed. Assume that we are given twoR

Tuned Union regular strings of digits representing two counters. To add the counters, we process
the digits of the shorter string, one by one starting from the least-significant digit,
and update the digits of the longer string accordingly. Let di (d′i) denote the digit
at position i in the shorter (longer) string. Assume that we are processing position
i ≥ 0, and that d′j is the first 2, if any, in the longer string where j > i.

(1) If di = 0: Do nothing.
(2) If di = 1:

(a) If d′i = 0, or d′i = 1 and is a digit within a 01? substring: Increase d′i
by one and fix d′j if it exists.

(b) If d′i = 2: Fix d′i then increase it by one.
(c) Otherwise: Increase d′i by one and then fix it.

(3) If di = 2: Repeat the actions of the previous case twice.

To distinguish whether d′i = 1 is a digit within a 01? substring or not, since we
sequentially traverse the string least-significant digits first, we can remember the
last digit that is not 1 before the current digit. It is not difficult, using a case-by-
case analysis, to see that this algorithm computes the correct sum and that the
resulting string is regular. The stack of pointers must be concomitantly updated
to refer to the 2’s in the resulting rank sequence.

By regularity, the sum of the digits for a string of length ` is at most `. From
the description of the algorithm, it directly follows that if ` is the length of the
shorter string, the algorithm performs at most ` fixes each corresponding to one
join. In a binomial heap of size m, the number of binomial trees is bounded by
lgm + 1. It follows that, for two binomial heaps of sizes m and n, m ≤ n, Union
involves at most lgm + 1 element comparisons and has O(lgm) worst-case cost.

2.3. Binomial heaps with prefix-minimum pointers

Starting with the standard binomial heaps, our objective is to implement Delete
involving at most lg n element comparisons such that Minimum requires no elem-
ent comparisons. To do this, we maintain prefix-minimum pointers [8] for theR

Prefix-
minimum
pointers

roots of the binomial trees. The prefix-minimum pointer of a root of rank k points
to the root with the smallest value among the roots of rank j for all j ≤ k. That
is, when the prefix-minimum pointers are available, we know for each root which
of the roots of the smaller trees contains the minimum element in this prefix. In
particular, the prefix-minimum pointer of the root of the largest tree points to the
current overall minimum. The prefix-minimum pointer of a root either points to
itself or to the same node as the prefix-minimum of the root of the next smaller
tree; this requires one element comparison per pointer update.

To support all other operations efficiently, except Insert, we rely on a compact
representation of the prefix-minimum pointers. Let I = {r1, r2, . . . , rt} be the

BIPARTITE BINOMIAL HEAPS 9

set of the ranks of all roots. Now we introduce a minimal set of disjoint closed
intervals, that we call stairs, having the following two properties: L

Stairs• The union of these intervals covers the whole set I.
• For each interval [rj . . rk] the prefix-minimum pointer of every root, whose

rank is in this interval, points to the root of rank rj .

That is, the prefix-minimum pointers of all roots at the same stair point to the
root whose rank is indicated by the left endpoint of this stair. Observe that
only Borrow will gain from this compact representation, whereas every Insert,
Delete, or Union has to partially recompute the list of stairs.

We implement Borrow carefully so that we neither perform any element com- L

Fast Borrowparisons nor invalidate the prefix-minimum pointers represented by the stairs. The
target is that the worst-case cost of Borrow would still be O(1). Let x be the
root of the smallest tree, y the smallest child of x if any, and z the root of the
second-smallest tree if any.

(1) If y exists: Swap x and y, detach y from the root list and its children,
concatenate the child list of y and the rest of the root list, and borrow
y. Assume that the rank of x is rj . Now replace the first stair [rj . . rk]
with [0 . . rj − 1] if rj = rk, or with [0 . . rk] otherwise. In both cases, the
corresponding prefix-minimum pointer is set to point to x.

(2) If y does not exist, z exists, and the prefix-minimum pointer of z points to
x: Swap x and z, detach z from the root list, and borrow z. Assume that
the rank of z is rj . Now replace the first stair [0 . . rk] with [rj . . rk]. The
prefix-minimum pointer associated with this stair should still refer to x.

(3) If y does not exist, z exists, and the prefix-minimum pointer of z points
to itself: Borrow x and remove the first stair.

(4) If neither y nor z exists: Borrow x and make the root and stair lists empty.

We rely on borrow-based Delete. Let k be the rank of the binomial tree that
contains the deleted node. The number of element comparisons involved when
deleting the node and fixing the heap order is at most k. We then have to update
the prefix-minimum pointers. The key idea is that we only need at most lg n− k
element comparisons to recompute the prefix-minimum pointers for the roots of
the larger trees. It follows that Delete involves at most lg n element comparisons.

One way to implement Insert is to rely on repeated joins. Once there are no
more joins to perform, we update the prefix-minimum pointers by scanning them
sequentially. Hence, Insert involves at most lg n + 1 element comparisons and
has O(lg n) worst-case cost. Another comparison-optimized way is to use binary L

Tuned Insertsearch to find the first root whose element is smaller than that in the given node.
When this position is known, joins can be performed and the prefix-minimum
pointers can be updated without any further element comparisons. This reduces
the number of element comparisons performed per Insert to at most lg lg n + 1,
even though Insert still has O(lg n) worst-case cost.

A straightforward implementation of Union would be to perform all the possible
joins and then update all the prefix-minimum pointers, for a total of at most 2 lg n
element comparisons. To improve this bound to lg n + 1, we implement Union L

Tuned Union

10 ELMASRY ET AL.

more carefully. The main idea is to sequentially consider trees from the smaller to
the larger ranks such that for each rank we only consume one element comparison
for either performing a join or updating a prefix-minimum pointer, but not both.
Assume that we have already merged and updated the prefix-minimum pointers
of the roots of the trees whose ranks are less than k. There is at most one tree of
rank k from each heap and at most one more tree of rank k that results from the
previous joins. If in total there is one tree of rank k, we only update the prefix-
minimum pointer of its root. If in total there are two trees of rank k, we only join
the two trees, resulting in no trees of rank k in the combined heap. If there are
three trees of rank k, we only need to perform a join but not a prefix-minimum
pointer update for the leftover tree of rank k; the details of this case are as follows.
Let x be the root of the tree of rank k from the heap that contains the minimum
element among all smaller trees handled so far, let y be the root of the tree of rank
k that results from the previous joins, and let z be the root of the third tree of
rank k. There are two cases that can be distinguished by a pointer comparison:

(1) If the prefix-minimum pointer of x is pointing to y: Let the prefix-minimum
pointer of y point to itself, and join the trees rooted at x and z.

(2) Otherwise: Keep the prefix-minimum pointer of x as it is, and join the
trees rooted at y and z.

It is not difficult to see that the above algorithm correctly maintains the prefix-
minimum pointers for the roots of the merged heap.

3. Multipartite Binomial Heaps

In this section we review the operational principles of multipartite binomial
heaps [8], which were designed to reduce the number of element comparisons per-
formed by Delete to lg n + O(1) while keeping the worst-case cost of Minimum,
Insert, and Borrow a constant. A multipartite binomial heap has three com-
ponents (assuming that the floating tree is part of the main store):

Buffer: This is a binomial heap, with a minimum pointer, relying on the
redundant regular binary system (as in Section 2.2). The buffer stores
O(
√
n) elements and is responsible for handling insertions.

Main store: This is a binomial heap augmented with prefix-minimum point-
ers (as in Section 2.3). A big portion of the n elements is stored in this
part of the data structure.

Floating tree: This is a single binomial tree. It is needed to regulate the
traffic between the buffer and the main store, as it is necessary to move
elements to the main store when the buffer overflows.

Reservoir: This is a single tree, initially a binomial tree, but it gradually
forfeits its perfect structure while nodes are borrowed or deleted. The
reservoir is never larger than the main store.

In the original description [8], the buffer and the main store were tightly coupled.
We view the components as separate heaps and the floating tree as an annex to

BIPARTITE BINOMIAL HEAPS 11

main store

Delete

Insert

< n/2<
√
n

floating tree

(0 | 1)∗

(0 | 1 | 01∗2)∗

reservoirbuffer

Borrow

Delete

borrow-based Delete

Figure 1. A multipartite binomial heap illustrated in abstract form.

the main store. An illustration of the data structure, together with the operations
supported by the different components, is given in Figure 1.

When the buffer becomes too big, one of the largest two trees or half of the
largest tree is moved to the main store. Analogously, when the reservoir becomes
empty, one of the largest trees or half a tree is moved from the buffer (or from the
main store if the buffer is empty) to the reservoir. This relocation should avoid
invalidating any of the pointers pointing to the roots. Moreover, since a split of a
binomial tree can be carried out at constant worst-case cost, these two operations
do not introduce any significant overhead to the heap operations. When a tree is
moved to the main store, its transplantation has constant worst-case cost, but the
merge of this floating tree into the main store would have logarithmic worst-case
cost. Hence, this merge has to be done incrementally keeping both components
functional throughout the process. As proved in [8], an important point is that a
logarithmic number of new insertions—within which this incremental work will be
performed—are to be executed before the buffer overflows again. In consequence,
there will always be at most one floating tree in the data structure. As Delete
is borrow-based for the floating tree, its structure remains binomial until it is
integrated with the main store.

In [8], the reservoir is the most problematic component; it was introduced to
support fast Borrow (in Sections 2.2 and 2.3 we showed how to efficiently perform
this operation for the buffer and the main store). To execute Borrow from the
reservoir, the smallest child of the root is detached and a pointer to it is returned.
Subsequently, the child list of this borrowed node is appended to the child list of
the root. If the reservoir contains only a single node, this node is borrowed and an

12 ELMASRY ET AL.

underflow operation is applied which refills the reservoir with a subtree from the
buffer (or from the main store if the buffer is empty). In Delete for the reservoir,
the given node is repeatedly swapped with its parent until it becomes the root,
the root is then detached from its children, and the children are joined from theR

Abnormal joins smaller to the larger. Here we join trees that are not of the same size and not even
binomial. Still, as proved in [8], the reservoir can accommodate Borrow and
Delete within the required bounds. Since the binomial structure of the reservoir
is broken, it is not known how to merge two reservoirs efficiently; this is the reason
why we needed a different implementation to make the data structure efficiently
mergeable.

Let H be a multipartite binomial heap, and let B, R, S, and T be its buffer,
reservoir, main store, and floating tree, respectively. A subtle detail here is thatR

Owners every root should know in which component it lies. This owner information is
needed for deciding which type of Delete to invoke. When a tree is moved from
one component to another, due to a buffer overflow or reservoir underflow, the
owner information at the root can be updated accordingly. In joins it is equally
easy to update this information.

Let us now consider how the heap operations are implemented for H by em-
ploying the corresponding operations for the individual components.

Minimum(H): Since the overall minimum can be in any of the components,
we maintain a pointer to the overall minimum among the four minima.
Subsequently, minimum finding involves no element comparisons and the
additional overhead introduced to the other operations is only a constant.

Insert(H, p): Invoke Insert(B, p). If B becomes too big, cut one of the
largest two trees or half of the largest tree from B such that the minimum
pointer is not invalidated and make the cut tree the floating tree T for S.
If possible, perform one step of the incremental process merging T into S.

Borrow(H): If the reservoir happens to be empty, move one of the largest
two trees or half a tree from B (or from S if B is empty) to R such that the
minimum pointer (any of the prefix-minimum pointers) is not invalidated.
After this, invoke Borrow(R) and return the borrowed node.

Delete(H, p): Starting from the node pointed to by p, traverse the nodes
until reaching the root of the tree where p is located. Consult in which com-
ponent this root lies; in accordance, invoke Delete(B, p), Delete(R, p),
Delete(S, p), or Delete(T, p).

As to the performance of these operations, the claimed bounds directly follow
from the bounds derived for the individual components. Since the size of the buffer
is limited to O(

√
n), matching the bound for the Delete operations for the other

components, Delete(B, p) will perform at most lg n+O(1) element comparisons.
For a more detailed description and analysis of the data structure, we refer to [8].

BIPARTITE BINOMIAL HEAPS 13

main store

Delete

Union

Borrow

Insert

floating tree

(0 | 1)∗

(0 | 1 | 01∗2)∗

buffer

Borrow

Union

borrow-based Delete

< 10 lgn

Figure 2. A bipartite binomial heap illustrated in abstract form.

4. Bipartite Binomial Heaps

Now we are ready to describe a simplified version of multipartite binomial heaps.
We can summarize the changes made as follows:

• As described, we endow the buffer and the main store to support Borrow
at O(1) worst-case cost. This makes the reservoir obsolete.

• We retain the binomial structure of the building blocks used in the two
components. This makes the data structure efficiently mergeable.

• We limit the size of the buffer to O(lg n). This helps us to improve the
constant factor in the leading term for the bound on the number of element
comparisons performed by Union.

Because of the first two properties we name the resulting data structure a bipartite
binomial heap. In its basic form a bipartite binomial heap has a buffer, a main
store, and possibly a floating tree as an annex to the main store. These components
are implemented as in a multipartite binomial heap: The buffer is a binomial
heap, with a minimum pointer, relying on the redundant regular binary system;
the main store is a binomial heap augmented with prefix-minimum pointers; and
the floating tree is a single binomial tree. An illustration of the data structure is
given in Figure 2. Let H be a bipartite binomial heap, and let B, S, and T be
its buffer, main store, and floating tree, respectively. Next we consider how the
different heap operations are implemented for H.

We still maintain a pointer to the smallest among the minima of B, S, and
T . Therefore, Minimum(H) just returns the node pointed to by this pointer.

14 ELMASRY ET AL.

Clearly, Minimum involves no element comparisons and has O(1) worst-case cost.
At the end of every Insert, Delete, and Union, the minimum pointer is updated
whenever necessary, involving a constant amount of extra work per operation.

In Insert(H, p), the node pointed to by p is inserted into the buffer by invoking
Insert(B, p). Let nB be the size of B and nS that of S, i.e. nB + nS = n. When
limiting nB to O(lg n), we maintain an invariant that the buffer always contains
at most one tree of rank dlg lg nSe + 1 and no trees of higher rank. Immediately,
when an insertion creates two trees of rank dlg lg nSe+ 1, an overflow occurs andR

Redesigned
overflow

one of the largest trees is moved to the main store as a floating tree. Naturally,
we avoid selecting a tree if the minimum pointer points to it. As before, this
floating tree is incrementally merged with the trees in the main store. The work
is distributed evenly among the forthcoming dlg nSe + 1 Insert operations such
that each Insert will perform a constant amount of extra work. Each step of the
incremental process will go forward one rank. The process can be in three different
states: Either it moves a floating tree forward since its rank is larger than the rank
of the current tree, it joins the floating tree and a tree of the same size forming a
larger floating tree, or it updates a prefix-minimum pointer after the floating tree
has reached its final location.

Insert has O(1) worst-case cost and may involve four element comparisons
(one for a join inside the buffer, one to possibly update the minimum pointer of
the buffer, one to update the overall minimum pointer if necessary, and one to
advance the incremental merge in the main store if necessary).

In Borrow(H), if the buffer is non-empty, we invoke Borrow(B), else we
invoke Borrow(S). As explained before, Borrow involves no element compari-
sons and has O(1) worst-case cost. Observe that, if a node from the buffer is
borrowed, this is advantageous for the incremental merge since it will have more
time to finish before the next overflow occurs. Formally, the correctness is proved
in the following theorem.

Theorem 4.1. At most one floating tree exists at any given point of time.

Proof. Let ` = dlg lg nSe+ 1 just prior to an overflow. When one of the two trees
of rank ` has been removed from the buffer, all the digits in the rank sequence of
the roots are either 0’s or 1’s. In particular, the digit at position ` − 1 must be

a 0. Hence, the buffer can contain at most 2` +
∑`−2

i=0 2i nodes, which is at most
2` + 2`−1 − 1. To produce another tree of rank `, 2`−1 + 1 new nodes must be
inserted into the structure. Due to the choice of `, this is at least dlg nSe+ 1.

Let n′S denote the size of the main store when handling this specific overflow.
Since nS < n′S , the buffer can accommodate even more than dlg nSe+ 1 insertions
before it will contain two trees of rank dlg lg n′Se + 1. To sum up, it must be the
case that the previous incremental merge in the main store has finished before a
new incremental process starts. When the buffer is non-empty, the decrease in size
always happens in it, which means that two trees of rank dlg lg n′Se+ 1 can never
be created because of borrowings and deletions. When the buffer is empty, the
main store may decrease in size, but in this case our invariant is trivially true. �

BIPARTITE BINOMIAL HEAPS 15

As for a multipartite binomial heap, Delete is performed in the component
where the given node lies. So, the roots should still know their owners. In the
main store and floating tree, Delete is borrow-based.

• In the buffer, the worst-case cost of Delete is only O(lg lg n) due to its
logarithmic size. By setting the limit 10 lg n on the size of the buffer, the
number of element comparisons performed is at most 2 lg(10 lg n), which
is at most lg n for n ≥ 216.

• Assuming that the rank of the floating tree (if any) is k, borrow-based
Delete in there involves at most k element comparisons and has O(k)
worst-case cost. Depending on the current state of the incremental merging
process there are two cases. First, if the floating tree has not yet reached
its final location, there is no need to do anything else. Second, if the
floating tree has reached its final location and some of the prefix-minimum
pointers have already been updated, Delete can recompute all the prefix-
minimum pointers maintained for the roots of rank k and higher, and
the incremental process can be terminated. This recomputation requires
lg n−k element comparisons, and the amount of work done is proportional
to this. Thus, for the floating tree the worst-case cost of Delete is O(lg n).

• Since the main store is a binomial heap using prefix-minimum pointers, it
supports Delete at O(lg n) worst-case cost involving at most lg n element
comparisons.

Taking into account the additional two element comparisons possibly needed for
updating the pointer to the overall minimum, at most lg n+2 element comparisons
are performed per Delete, provided that n is large enough.

Lastly, let us consider the Union operation. Assume that the two bipartite
binomial heaps to be merged are H1 and H2. In Union(H1,H2), the two buffers
are merged as described in Section 2.2, and the two main stores are merged as
described in Section 2.3. The merge of the buffers may produce up to two new
overflow trees. Also, the already existing two floating trees, if any, need a special
handling. To get rid of (up to three and leave one of) these floating and overflow
trees, we insert them one by one into the main store that resulted from the merging.
We insert these extraneous trees using binary search in the same way as we inserted
a single node into a binomial heap that uses prefix-minimum pointers.

The worst-case cost of merging the buffers is O(lg lgm) including at most
lg lgm + 3 element comparisons. The merging of the two main stores has O(lg n)
worst-case cost and involves at most lg n + 1 element comparisons. The worst-
case cost of handling the extraneous trees is O(lg n), but this involves at most
3 lg lg n + 3 element comparisons. The update of the pointer to the overall mini-
mum involves one element comparison. Thus, in total, at most lg n + 4 lg lg n + 8
element comparisons are performed per Union.

16 ELMASRY ET AL.

Table 2. The worst-case comparison complexity of heap oper-
ations after each refinement. Here n (m) denotes the number of
elements stored in (the smaller of) the manipulated data struc-
ture(s) prior to the operation in question. All structures support
Minimum at O(1) worst-case cost involving no element compari-
sons. The improvements over known bounds are highlighted.

Data structure Insert Borrow Union Delete

Binomial heap

• minimum pointer [17] lgn + 1 0 lgn + 1 2 lgn

• powerful numeral system [2] 2 0 lgm + 1 2 lgn

• prefix-minimum pointers [8] lg lgn + 1 a 0 lgn + 1 lgn

Bipartite binomial heap 4 0 lgn + 4 lg lg n + 8 lgn + 2

aThe worst-case cost is logarithmic.

5. Concluding Remarks

We showed that, starting from a textbook version of a binomial heap, via data-
structural transformations, it was possible to obtain a state-of-the-art mergeable
heap that is asymptotically optimal and nearly constant-factor optimal with re-
spect to the number of element comparisons for the considered heap operations.
The improvements achieved by stepwise refinements are summarized in Table 2.
Although we described the transformations using binomial trees as the building
blocks, the transformations are quite general; some of them only require that the
building blocks can be efficiently joined.

As for the comparison complexity of heap operations, the following open ques-
tions still remain.

• By applying data-structural bootstrapping [16, Chapter 10], which moves
the cost of Union to Delete, we would be able to achieve 2 lg n +
O(lg lg n) element comparisons per Delete and O(1) worst-case cost per
Union. The basic idea of bootstrapping is to allow heaps to store both
elements and heaps. This bound is a bit weaker than the best known
upper bound 2 lg n + O(1) [11] on the number of element comparisons
performed by Delete, when Union has O(1) worst-case cost. Further-
more, there is a gap between the lower bound lg n − O(1) and this best
known upper bound. Is it possible to achieve a bound of lg n+O(1) elem-
ent comparisons per Delete when Minimum, Insert, and Union have
constant worst-case cost?

• There seems to be a trade-off between the worst-case cost of Delete
and that of Borrow. In [11], the bound 2 lg n + O(1) on the number
of element comparisons per Delete was achieved, but the guaranteed
worst-case cost of Borrow is logarithmic. For a bipartite binomial heap,
using bootstrapping [16, Chapter 10], the bound 2 lg n + O(lg lg n) per

BIPARTITE BINOMIAL HEAPS 17

Delete would be achievable and the worst-case cost of Borrow would
still be O(1). What is the best possible bound on the number of element
comparisons performed by Delete when Minimum, Insert, Borrow,
and Union are required to have constant worst-case cost?

• Consider extending the operation repertoire with Decrease, which is
defined as follows:
Decrease(H, p, v): Replace the element stored at the node referenced

by pointer p in heapH with element v, assuming that the new element
is not larger than the old element.

What is the number of element comparisons performed by Delete when
all other heap operations (Minimum, Insert, Borrow, Decrease, and
Union) are required to have O(1) worst-case cost? At the time of writ-
ing this paper, the best known upper bound is around 70 lg n element
comparisons per Delete [12].

References

[1] G. S. Brodal, Fast meldable priority queues, Proc. of the 4th International Workshop on

Algorithms and Data Structures, Lecture Notes in Comput. Sci. 955, Springer, Berlin/

Heidelberg (1995), 282–290.
[2] M. R. Brown, Implementation and analysis of binomial queue algorithms, SIAM J. Comput.

7, 3 (1978), 298–319.

[3] M. J. Clancy and D. E. Knuth, A programming and problem-solving seminar, Tech. Rep.
STAN-CS-77-606, Dept. Comput. Sci., Stanford Univ., Stanford (1977).

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,

3rd Edition, The MIT Press, Cambridge (2009).
[5] J. R. Driscoll, H. N. Gabow, R. Shrairman, and R. E. Tarjan, Relaxed heaps: An alternative

to Fibonacci heaps with applications to parallel computation, Commun. ACM 31, 11 (1988),
1343–1354.

[6] R. D. Dutton, Weak-heap sort, BIT 33, 3 (1993), 372–381.

[7] S. Edelkamp, A. Elmasry, and J. Katajainen, The weak-heap data structure: Variants and
applications, J. Discrete Algorithms 16 (2012), 187–205.

[8] A. Elmasry, C. Jensen, and J. Katajainen, Multipartite priority queues, ACM Trans. Algo-
rithms 5, 1 (2008), Article 14.

[9] A. Elmasry, C. Jensen, and J. Katajainen, Two new methods for constructing double-ended

priority queues from priority queues, Computing 83, 4 (2008), 193–204.

[10] A. Elmasry, C. Jensen, and J. Katajainen, Two-tier relaxed heaps, Acta Inform. 45, 3
(2008), 193–210.

[11] A. Elmasry, C. Jensen, and J. Katajainen, Strictly-regular number system and data struc-

tures, Proc. of the 12th Scandinavian Symposium and Workshops on Algorithm Theory,
Lecture Notes in Comput. Sci. 6139, Springer, Berlin/Heidelberg (2010), 26–37.

[12] A. Elmasry and J. Katajainen, Worst-case optimal priority queues via extended regular
counters, Proc. of the 7th International Computer Science Symposium in Russia, Lecture
Notes in Comput. Sci. 7353, Springer, Berlin/Heidelberg (2012), 130–142.

[13] A. Elmasry and J. Katajainen, Fat heaps without regular counters, Discrete Math. Algo-
rithms Appl. 5, 2 (2013), Article 1360006.

[14] T. Hagerup, Sorting and searching on the word RAM, Proc. of the 15th Annual Symposium

on Theoretical Aspects of Computer Science, Lecture Notes in Comput. Sci. 1373, Springer,
Berlin/Heidelberg (1998), 366–398.

18 ELMASRY ET AL.

[15] H. Kaplan, N. Shafrir, and R. E. Tarjan, Meldable heaps and Boolean union-find, Proc.

of the 34th Annual ACM Symposium on Theory of Computing, ACM, New York (2002),
573–582.

[16] C. Okasaki, Purely Functional Data Structures, Cambridge University Press, Cambridge

(1998).
[17] J. Vuillemin, A data structure for manipulating priority queues, Commun. ACM 21, 4

(1978), 309–315.

	1. Introduction
	2. Three Variants of Binomial Heaps
	2.1. Standard binomial heaps
	2.2. Binomial heaps with a powerful numeral system
	2.3. Binomial heaps with prefix-minimum pointers

	3. Multipartite Binomial Heaps
	4. Bipartite Binomial Heaps
	5. Concluding Remarks
	References

