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Abstract. An in-place priority queue is a data structure that is stored
in an array, uses constant extra space in addition to the array elem-
ents, and supports the operations top (find-min), push (insert), and pop
(delete-min). In this paper we introduce an in-place priority queue, for
which top and push take O(1) worst-case time, and pop takes O(lgn)
worst-case time and involves at most lgn + O(1) element comparisons,
where n denotes the number of elements currently in the data structure.
The achieved bounds are optimal to within additive constant terms for
the number of element comparisons, hereby solving a long-standing open
problem. Compared to binary heaps, we surpass the comparison bound
for pop and the time bound for push. Our data structure is similar to a
binary heap with two crucial differences:

(1) To improve the comparison bound for pop, we reinforce a stronger
heap order at the bottom levels of the heap such that the element
at any right child is not smaller than that at its left sibling.

(2) To speed up push, we buffer insertions and allow O(lg2 n) nodes to
violate heap order in relation to their parents.

1 Introduction

A binary heap, invented by Williams [19], is an in-place data structure that

(1) implements a priority queue (i.e. supports the operations top, construct ,
push, and pop);

(2) requires O(1) words of extra space in addition to an array storing the elem-
ents; and

(3) is viewed as a nearly complete binary tree where, for every node other than
the root, the element at that node is not smaller than the element at its
parent (heap order).
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Table 1. The worst-case performance of some priority queues. The amount of extra
space is measured in words and the complexity of operations in element comparisons.
Here n denotes the number of elements stored and w the size of machine words in
bits. For all these data structures, the worst-case running time of top is O(1), that of
construct is O(n), and the worst-case running time of push and pop is proportional to
the number of element comparisons (except for heaps on heaps, push‡ is logarithmic).

Data structure Extra space push pop

Binary heaps [19] O(1) lgn+O(1) 2 lgn+O(1)

Binomial queues [1, 17] O(n) O(1) 2 lgn+O(1)

Heaps on heaps [13] O(1) lg lgn + O(1)‡ lgn+ log∗ n+O(1)

Queues of pennants [5] O(1) O(1) 3 lgn+ log∗ n+O(1)

Multipartite priority queues [10] O(n) O(1) lgn+O(1)

Engineered weak heaps [8] n/w+O(1) O(1) lgn+O(1)

Strengthened lazy heaps [this paper] O(1) O(1) lgn+O(1)

Letting n denote the number of elements in the data structure, a binary heap
supports top in O(1) worst-case time, and push and pop in O(lg n) worst-case
time. For Williams’ original proposal [19], the number of element comparisons
performed by push is at most lg n+O(1) and that by pop is at most 2 lg n+O(1).
Immediately after the appearance of Williams’ paper, Floyd showed [12] how to
support construct , which builds a heap for n elements, in O(n) worst-case time
with at most 2n element comparisons.

Since a binary heap does not support all the operations optimally, many
attempts have been made to develop priority queues supporting the same set
(or even a larger set) of operations that improve the worst-case running time
of the operations as well as the number of element comparisons performed by
them [1, 3, 5, 6, 8, 10, 13, 17]. In Table 1 we summarize the fascinating history of
the problem, considering the space and comparison complexities.

Assume that, for a problem of size n, the bound achieved is A(n) and the best
possible bound is OPT(n). We distinguish three different concepts of optimality:

Asymptotic optimality: A(n) = O(OPT(n)).
Constant-factor optimality: A(n) = OPT(n) + o(OPT(n)).
Up-to-additive-constant optimality: A(n) = OPT(n) +O(1).

As to the amount of space used and the number of element comparisons per-
formed, we aim at up-to-additive-constant optimality. From the information-
theoretic lower bound for sorting [15, Sect. 5.3.1], it follows that, in the worst
case, either push or pop must perform at least lg n−O(1) element comparisons.
As to the running times, we aim at asymptotic optimality. Our last natural
goal is to support push in O(1) worst-case time, because then construct can be
trivially realized in linear time by repeated insertions.

The binomial queue [17] was the first priority queue supporting push in O(1)
worst-case time. (This was mentioned as a short note at the end of Brown’s paper
[1].) However, the binomial queue is a pointer-based data structure requiring
O(n) pointers in addition to the elements. For binary heaps, Gonnet and Munro
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showed [13] how to perform push using at most lg lg n+O(1) element comparisons
and pop using at most lg n + log∗ n + O(1) element comparisons. Carlsson et
al. showed [5] how to achieve O(1) worst-case time per push by an in-place
data structure that utilizes a queue of pennants. (A pennant is a binary heap
with an extra root that has one child.) For this data structure, the number of
element comparisons performed per pop is bounded by 3 lg n + log∗ n + O(1).
The multipartite priority queue [10] was the first priority queue achieving the
asymptotically optimal time and up-to-additive-constant optimal comparison
bounds. Unfortunately, the structure is involved and its representation requires
O(n) pointers. Another solution [8] is based on weak heaps [7]: To implement
push in O(1) worst-case time, a bulk-insertion strategy is used—employing two
buffers and incrementally merging one with the weak heap before the other is
full. The weak heap also achieves the desired worst-case time and comparison
bounds, but it uses n additional bits.

Ever since the work of Williams [19], it was open whether there exists an
in-place data structure that can match the information-theoretic lower bounds
on the number of element comparisons for all the operations. In view of the lower
bounds proved in [13], it was not entirely clear if such a structure exists. In this
paper we answer the question affirmatively by introducing the strengthened lazy
heap that operates in-place, supports top and push in O(1) worst-case time, and
pop in O(lg n) worst-case time involving at most lg n+O(1) element comparisons.

When a strengthened lazy heap is used in heapsort, the resulting algo-
rithm sorts n elements in-place in O(n lg n) worst-case time performing at most
n lg n + O(n) element comparisons. The number of element comparisons per-
formed matches the information-theoretic lower bound for sorting up to the
additive linear term. Ultimate heapsort [14] is known to have the same complex-
ity bounds, but in both solutions the constant factor of the additive linear term
is high.

In a binary heap the number of element moves performed by pop is at most
lg n+O(1). We have to avow that, in our data structure, pop may require more
element moves. On the positive side, we can adjust the number of element moves
to be at most (1 + ε) lg n, for any fixed constant ε > 0 and large enough n, while
still achieving the desired bounds for the other operations.

Our work shows the limitation of the lower bounds proved by Gonnet and
Munro [13] (see also [3]) in their prominent paper on binary heaps. They showed
that dlg lg(n + 2)e − 2 element comparisons are necessary to insert an element
into a binary heap. In addition, slightly correcting [13], Carlsson [3] showed that
dlg ne + δ(n) element comparisons are necessary and sufficient to remove the
minimum from a binary heap that has n > 2hδ(n)+2 elements, where h1 = 1
and hi = hi−1 + 2hi−1+ i−1. One should notice that these lower bounds are valid
under the following assumptions:

(1) All the elements are stored in one nearly complete binary tree.
(2) Every node obeys the heap order before and after each operation.
(3) No order relation among the elements of the same level can be deduced from

the element comparisons performed by previous operations.
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Fig. 1. A strong heap in an array a[0 : 14] = [1, 3, 8, 4, 5, 9, 13, 6, 15, 7, 11, 10, 12, 14, 17]
viewed as a directed acyclic graph (left) and a stretched tree (right)

We prove that the number of element comparisons performed by pop can be
lowered to at most lg n+O(1) if we overrule the third assumption by imposing
an additional requirement that the element at any right child is not smaller than
that at the left sibling (Sect. 2). We also prove that push can be performed in
O(1) worst-case time if we overrule the second assumption by allowing O(lg2 n)
nodes to violate heap order (Sect. 3). Lastly, we combine the two ideas and use
them together in our final data structure (Sect. 4).

2 Strong Heaps: Adding More Order

A strong heap is a binary heap with one additional invariant: The element at
any right child is not smaller than that at the left sibling. This left-dominance
property is fulfilled for every right child in a fine heap [4] (or its alternatives [16,
18]), which uses one extra bit per node to maintain the property. Like a binary
heap, a strong heap is viewed as a nearly complete binary tree where the lowest
level may be missing some nodes at the rightmost (last) positions. Also, this tree
is embedded in an array in the same way. If the array indexing starts at 0, the
parent of a node at index i (i 6= 0) is at index b(i− 1)/2c, the left child (if any)
at index 2i+ 1, and the right child (if any) at index 2i+ 2.

Two views of a strong heap are exemplified in Fig. 1. On the left, the directed
acyclic graph has a nearly complete binary tree as its skeleton: There are arcs
from every parent to its children and additional arcs from every left child to its
sibling indicating the dominance relations. On the right, in the stretched tree, the
arcs from each parent to its right child are removed as these dominance relations
can be induced. In the stretched tree a node can have 0, 1, or 2 children. A node

4



method left-child(i)
return 2i + 1

method sibling(i)
if i = 0

return 0
return i + odd(i)− even(i)

method is-leaf (i, n)
if odd(i)

return sibling(i) ≥ n
return left-child(i) ≥ n

method strengthening-sift-down(i, n)
x← a[i]
while not is-leaf (i, n)

j ← sibling(i)
if even(i)

j ← left-child(i)
else if j < n and left-child(i) < n and

a[left-child(i)] ≤ a[j]
j ← left-child(i)

if x ≤ a[j]
break

a[i]← a[j]
i← j

a[i]← x

Fig. 2. Implementation of strengthening-sift-down; a right child is not accessed directly

has one child if in the skeleton it is a right child that is not a leaf or a leaf that
has a right sibling. A node has two children if in the skeleton it is a left child
that is not a leaf. If the skeleton has height h (height of a single node being 1),
the height of the stretched tree is at most 2h− 1, and on any root-to-leaf path
in the stretched tree the number of nodes with two children is at most h− 2.

The basic primitive used in the manipulation of binary heaps is the sift-down
procedure [12, 19] (see Fig. 4). This operation starts at a node that possibly
breaks heap order, traverses down the heap by following the path of children
containing the smaller of the elements at any two siblings, and moves the en-
countered elements one level up until the correct place of the element we started
with is found. For strong heaps the strengthening-sift-down procedure has the
same purpose, and our implementation (see Fig. 2) is similar, with one crucial
exception that we operate with the stretched tree instead of the nearly complete
tree. Now pop can be implemented by replacing the element at the root with
the element at the last position of the array (if there is any) and then invoking
strengthening-sift-down for the root.

Example 1. Consider the strong heap in Fig. 1. If its minimum was replaced
with the element 17 taken from the end of the array, the path to be followed by

strengthening-sift-down would include the nodes 〈 3 , 4 , 5 , 7 , 11 〉.

Let n denote the size of the strong heap and h the height of the underlying
tree skeleton. When going down the stretched tree, we perform at most h − 2
element comparisons due to branching at binary nodes and at most 2h − 1
element comparisons due to checking whether to stop or not. Hence, the number
of element comparisons performed by pop is bounded by 3h−3, which is at most
3 lg n as h = blg nc+ 1.

To build a strong heap, we mimic Floyd’s heap-construction algorithm [12];
that is, we invoke strengthening-sift-down for all nodes, one by one, processing

5



them in reverse order of their array positions. One element comparison is needed
for every met left child in order to compare the element at its right sibling with
that at its left child, making a total of at most n/2 element comparisons. The

number of other element comparisons is bounded by the sum
∑blgnc+1

i=1 3 · i ·
dn/2i+1e, which is at most 3n+o(n). Thus, construct requires at most 3.5n+o(n)
element comparisons.

For both pop and construct , the amount of work done is proportional to the
number of element comparisons performed, i.e. the worst-case running time of
pop is O(lg n) and that of construct is O(n).

Lemma 1. A strong heap of size n can be built in O(n) worst-case time by re-
peatedly calling strengthening-sift-down. Each strengthening-sift-down operation
uses O(lg n) worst-case time and performs at most 3 lg n element comparisons.

Next we show how to perform a sift-down operation on a strong heap of size n
with at most lg n+O(1) element comparisons. At this stage we allow the amount
of work to be higher, namely O(n). To achieve the better comparison bound, we
have to assume that the heap is complete, i.e. that all leaves have the same depth.
Consider the case where the element at the root of a strong heap is replaced by a
new element. In order to reestablish strong heap order, the swapping-sift-down
procedure (Fig. 3) traverses the left spine of the skeleton bottom up starting
from the leftmost leaf, and determines the correct place of the new element,
using one element comparison at each node visited. Thereafter, it moves all the
elements above this position on the left spine one level up, and inserts the new
element into this place. If this place is at level g, we have performed g element
comparisons. Up along the left spine there are lg n−g+O(1) remaining levels to
which we have moved other elements. While this results in a heap, we still have
to reinforce the left-dominance property at these upper levels. In accordance, we
compare each element that has moved up with the element at the right sibling.
If the element at index j is larger than the element at index j+1, we interchange
the subtrees Tj and Tj+1 rooted at positions j and j + 1 by swapping all their
elements. The procedure continues this way until the root is reached.

Example 2. Consider the strong heap in Fig. 1. If the element at the root was
replaced with the element 16, the left spine to be followed by swapping-sift-down

would include the nodes 〈 3 , 4 , 6 〉, the new element would be placed at
the last leaf we ended up with, the elements on the left spine would be lifted
up one level, and an interchange would be necessary for the subtrees rooted at

node 6 and its new sibling 5 .

Given two complete subtrees of height h, the number of element moves needed

to interchange the subtrees is O(2h). As
∑blgnc

h=1 O(2h) is O(n), the total work
done in the subtree interchanges is O(n). Thus, swapping-sift-down requires at
most lg n+O(1) element comparisons and O(n) work.

Lemma 2. In a complete strong heap of size n, swapping-sift-down runs in-
place and uses at most lg n+O(1) element comparisons and O(n) element moves.
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method parent(i)
if i = 0

return 0
return b(i− 1)/2c

method bottom-up-search(i, j)
while j > i and a[j] ≥ a[i]

j ← parent(j)
return j

method swap-subtrees(u, v, n)
j ← 1
while v < n

for i← 0, 1, . . . , j − 1
swap(a[u + i],a[v + i])

u← left-child(u)
v ← left-child(v)
j ← 2 ∗ j

method leftmost-leaf (i, n)
while left-child(i) < n

i← left-child(i)
return i

method lift-up(i, j, n)
x← a[j]
a[j]← a[i]
while j > i

swap(a[parent(j)], x)
if a[sibling(j)] < a[j]

swap-subtrees(j, sibling(j), n)
j ← parent(j)

method swapping-sift-down(i, n)
k ← leftmost-leaf (i, n)
k ← bottom-up-search(i, k)
lift-up(i, k, n)

Fig. 3. Implementation of swapping-sift-down

3 Lazy Heaps: Buffering Insertions

In the variant of a binary heap that we describe in this section some nodes
may violate heap order because insertions are buffered and unordered bulks are
incrementally melded into the heap. The main difference between the present
construction and the construction in [8] is that, for a heap of size n, here we
allowO(lg2 n) heap-order violations instead ofO(lg n), but we still useO(1) extra
space to track where the potential violations are. Using strengthening-sift-down
instead of sift-down, the construction will also work for strong heaps.

A lazy heap is composed of three parts: main heap, submersion area, and
insertion buffer. The main heap together with the submersion area are laid out
in the array as a binary heap, and the insertion buffer occupies the last array
locations. The following rules are imposed:

(1) New insertions are appended to the insertion buffer at the end of the array.
(2) If the size of the main heap is n′, the size of the insertion buffer is O(lg2 n′).
(3) When the insertion buffer becomes full, a proportion of its elements are

treated as an embryo for a new submersion area.
(4) The submersion area is incrementally melded into the main heap by perform-

ing a constant amount of work in connection with every modifying operation
(push/pop).

(5) When the insertion buffer is full again, the incremental submersion must
have been completed.

(6) When the insertion buffer is empty, the incremental submersion must have
been completed. When a pop is performed, a replacement element is taken
from either the insertion buffer or the main heap (if the former is empty).

7



method sift-down(i, n)
x← a[i]
while left-child(i) < n

j ← left-child(i)
if sibling(j) < n and a[sibling(j)] < a[j]

j ← sibling(j)
if x ≤ a[j]

break
a[i]← a[j]
i← j

a[i]← x

method submersion(n′, n)
r ← n− 1
`← max{n′, parent(r) + 1}
while r 6= 0

`← parent(`)
r ← parent(r)
for i← r, r − 1, . . . , `

sift-down(i, n)

Fig. 4. Implementation of submersion; n′ is the size of the main heap and n the size
of the main heap plus the submersion area; sift-down is from [12]

The insertion buffer should support insertions in O(1) time, and minimum
extractions in O(lg n) time using at most lg n+O(1) element comparisons. Let
t = blg(1+lg(1+n′))c. We treat the insertion buffer as a sequence of chunks, each
of size k = 2t/4, and limit the number of chunks to at most k. All the chunks,
except possibly the last, will contain exactly k elements. The minimum of each
chunk is kept at the first location of the chunk, and the index of the minimum of
the buffer is maintained. When this minimum of the buffer is removed, the last
element is moved into its place, the new minimum of that chunk is found in O(k)
time using k − 1 element comparisons (by scanning the elements of the chunk),
and then the new overall minimum of the buffer is found in O(k) time using
k − 1 element comparisons (by scanning the minima of the chunks). When pop
needs a replacement for the old minimum, we have to consider the case where
the last element is the minimum of the insertion buffer. In such a case, to avoid
losing track of this minimum, before any processing, we swap it with the first
element of the buffer. In push, a new element is appended to the insertion buffer.
Subsequently, the minimum of the last chunk and the minimum of the buffer are
adjusted if necessary; this requires at most two element comparisons. Once there
are k full chunks, the first half of them are used to form a new submersion area
and the elements therein are incrementally melded into the main heap.

The submersion area is treated as part of the main heap even though some
of its nodes may not obey heap order. To reestablish heap order, the submersion
operation (Fig. 4) will traverse the heap bottom up level by level as in Floyd’s
heap-construction algorithm [12]. Starting with the parents of the nodes con-
taining the initial embryo of the submersion process, for each node we call the
sift-down procedure. We then consider the parents of these nodes at the next
upper level, restoring heap order up to this level. This process is repeated all the
way up to the root. As long as there are more than two nodes that are considered
at a level, the number of such nodes almost halves at the next level.

In the following analysis we separately consider two phases of the submersion
procedure. The first phase comprises the sift-down calls for the nodes at the levels
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with more than two involved nodes. Let b denote the size of the initial bulk. The
number of the nodes visited at the jth last level is at most b(b−2)/2j−1c+2. For
a node at the jth last level, a call to the sift-down subroutine requires O(j) work.

In the first phase, the amount of work involved is O(
∑dlgn′e

j=2 j/2j−1 · b) = O(b).
The second phase comprises at most 2blg n′c calls to the sift-down subroutine;
this accounts for a total of O(lg2 n′) work. Since b = Θ(lg2 n′), the overall work
done is O(lg2 n′), i.e. amortized constant per push.

Instead of doing a submersion in one shot, we distribute the work by per-
forming O(1) work in connection with every modifying operation. Obviously,
such a submersion should be done fast enough to complete before the insertion
buffer becomes either full or empty.

To track the progress of the submersion process, we maintain two intervals
that represent the nodes up to which the sift-down subroutine has been called.
Each such interval is represented by two indices indicating its left and right end-
points, call them (`1, r1) and (`2, r2). These two intervals are at two consecutive
levels, and the parent of the right endpoint of the first interval has an index that
is one less than the left endpoint of the second interval, i.e. `2−1 = b(r1−1)/2c.
We say that these two intervals form the frontier. While the process advances,
the frontier moves upwards and shrinks until it has one or two nodes. The fron-
tier imparts that a sift-down is being performed starting from the node whose
index is `2. In addition to the frontier, we also maintain the index of the node
that the sift-down in progress is currently processing. In connection with every
modifying operation, the current sift-down progresses a constant number of lev-
els downwards and this index is updated. Once sift-down returns, the frontier is
updated. When the frontier passes the root, incremental submersion is complete.
To summarize, the information maintained to record the state of the submersion
process is two intervals of indices to represent the frontier plus the node which
is under consideration by the current sift-down.

As for the insertion buffer, we maintain the index of the minimum on the
frontier. We treat each of the two intervals of the frontier as a set of consecutive
chunks. Except for the first or last chunk on each interval that may have less
nodes, every other chunk has k nodes. In addition, we maintain the invariant
that the minimum within every chunk on the frontier is kept at the entry storing
the first node among the nodes of the chunk. An exception is the first and last
chunks, where we maintain the index for the minimum on each.

To remove the minimum of the submersion area, we know that it must be on
the frontier and we readily have its index. This minimum is swapped with the last
element of the array and a sift-down is performed to remedy the order between
the replacement element and the elements in its descendants. We distinguish
between two cases:

(1) There are at most two nodes on the frontier.
(2) There are more than two nodes on the frontier.

In the first case, we make the minimum index of the frontier point to the smaller.
In the second case, the height of the nodes on the frontier is at most 2 lg lg n+
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O(1) so we can afford to do the following. The chunk that contained the removed
minimum is scanned to find its new minimum. If this chunk is neither the first
nor the last of the frontier, the found minimum is swapped with the element
at its first position, followed by a sift-down performed on the latter element.
The overall minimum of the frontier is then localized by scanning the minima
of all the chunks. Extracting the minimum of the submersion area thus requires
O(lg n) time and uses at most 1/2 · lg n+O(lg lg n) element comparisons.

In the main heap the top and pop operations are performed as in a binary
heap with the same cost limitations. An exception is that, if pop meets the
frontier of the submersion area, we stop the execution before crossing it.

To summarize, in a lazy heap, top reports the minimum of the three com-
ponents, push is delegated to the insertion buffer, and pop is delegated to the
component where the overall minimum resides.

Lemma 3. In a lazy heap of size n, top and push require O(1) worst-case time
and pop requires O(lg n) worst-case time.

4 Strengthened Lazy Heaps: Putting Things Together

Our final construction is similar to the one of the previous section in that there
are three components: main heap, submersion area, and insertion buffer. Here
the main heap has two layers: a top heap that is a binary heap, and each leaf of
the top heap roots a bottom heap that is a complete strong heap. The main heap
is laid out in the array as a binary heap, and in accordance every bottom heap
is scattered throughout the array. As before, the submersion area is contained
within the main heap, leading to a possible disobedience of heap order at its
frontier. Because the main heap is only partially strong, we call the resulting
data structure a strengthened lazy heap. Let n′ be the size of the main heap, and
let t = blg(1 + lg(1 + n′))c. The height of the bottom heaps is either t − 3 and
t − 2, or t − 2 and t − 1. In the insertion buffer, the size of a chuck is k = 2t/4
and the size of the buffer is bounded by k2. To help the reader get a complete
picture of the data structure, we visualize it in Fig. 5.

We use a new procedure, that we call combined -sift-down (Fig. 6), instead of
sift-down. Assume we have to replace the minimum of the top heap with another
element. To reestablish heap order, we follow the proposal of Carlsson [2]: We
traverse down along the path of nodes containing the smaller of the elements
at any two siblings until we reach a root of a bottom heap. By comparing the
replacement element with the element at that root, we check whether the re-
placement element should land in the top heap or in the bottom heap. In the
first case, in binary-search-sift-up we find the position of the replacement elem-
ent using binary search on the traversed path and thereafter do the required
element moves. In the second case, we apply swapping-sift-down on the root of
the bottom heap.

Let us now recap how the operations are executed and analyse their per-
formance. Here we ignore the extra work done due to the incremental processes.
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Fig. 5. Schematic view of a strengthened lazy heap

method ancestor(i, d)

return b(i + 1)/2dc − 1

method rotate(i, k, h)
x← a[i]
for d← h− 1, h− 2, . . . , 0

a[ancestor(k, d + 1)]← a[ancestor(k, d)]
a[k]← x

method correct-place(i, k, h)
d← h
while i 6= k

h′ ← b(h + 1)/2c
j ← ancestor(k, h′)
h← h− h′

if a[i] ≤ a[j]
k ← j
d← d− h′

else
i← ancestor(k, h)

return (i, d)

method binary-search-sift-up(i, k, h)
(j, d)← correct-place(i, k, h)
rotate(i, j, d)

method combined-sift-down(i, n, h)
j ← i
repeat h times

k ← left-child(j)
if a[sibling(k)] < a[k]

k ← sibling(k)
j ← k

if a[i] ≤ a[j]
binary-search-sift-up(i, parent(j), h− 1)

else
rotate(i, j, h)
swapping-sift-down(j, n)

Fig. 6. Implementation of combined-sift-down

Clearly, top can be carried out in O(1) worst-case time by reporting the minimum
of three elements:

(1) the element at the root of the top heap,

(2) the minimum of the insertion buffer, and

(3) the minimum of the submersion area.
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As before, push appends the given element to the insertion buffer and updates
the minimum of the buffer if necessary. To perform pop, we need to consider the
different minima and remove the smallest among them.

Case 1. If the minimum is at the root of the top heap, we find a replacement
for the old minimum and apply combined -sift-down for the root by making sure
that we do not cross the frontier. Let n denote the total number of elements. The
top heap is of size O(n/ lg n) and the bottom heaps are of size O(lg n). To reach
the root of a bottom heap, we perform lg n−lg lg n+O(1) element comparisons. If
we have to go upwards, we perform lg lg n+O(1) additional element comparisons
in the binary search while applying the binary-search-sift-up operation. On the
other hand, if we have to go downwards, swapping-sift-down needs to perform at
most lg lg n + O(1) element comparisons. In both cases, the number of element
comparisons performed is at most lg n+O(1) and the work done is O(lg n).

Case 2. If the overall minimum is in the insertion buffer, it is removed as ex-
plained in the previous section. This removal involves 2k+O(1) element compari-
sons and the amount of work done is proportional to that number. Since we have
set k = 2t/4 = 1/4 · lg n+O(1), this operation requires at most 1/2 · lg n+O(1)
element comparisons and O(lg n) work.

Case 3. If the frontier contains the overall minimum, we apply a similar
treatment to that explained in the previous section with a basic exception. If
there are more than two nodes on the frontier, the height of the nodes on the
frontier is at most 2 lg lg n+O(1). In this case, we use the strengthening-sift-down
procedure in place of the sift-down procedure. This requires at most 1/2 · lg n+
O(lg lg n) element comparisons and O(lg n) work. If there are at most two nodes
on the frontier, the frontier lies in the top heap. In this case, we apply the
combined -sift-down procedure instead. This requires at most lg n+O(1) element
comparisons and O(lg n) work. Either way, for large enough n, the minimum
extraction here requires at most lg n+O(1) element comparisons.

Because of the subtree interchanges made in swapping-sift-down, the number
of element moves performed by pop—even though asymptotically logarithmic—
would be larger than the number of element comparisons. Assume that the num-
ber of these moves is bounded by c lg n for some constant c. We can control the
number of element moves by adjusting the heights of the bottom heaps. If the
maximum height of a bottom heap is set to t− lg(c/ε) for some small constant
ε, 0 < ε ≤ c, the number of element moves performed therein will be bounded
by ε lg n+O(1), while the bounds for the other operations still hold.

Due to the two-layer structure, the incremental remedy processes are more
complicated for a strengthened lazy heap than for a lazy heap. Let us consider
the introduced complications one at a time and sketch how we handle them.

Complication 1. As the size of the heap changes due to insertions and dele-
tions, we have to move the border between the two layers dynamically. To make
the bottom heaps one level shallower, we just adjust t and ignore the left-
domination property for the nodes on the previous border. To make the bottom
heaps one level higher, we need a new incremental remedy process that scans
the nodes on the old border and applies strengthening-sift-down on each left
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child. Again, we only need a constant amount of space to record the state of this
process. The total work done in the border lifting is linear so, after the process
is initiated, every forthcoming modifying operation has to take a constant share
of the work.

There are several special cases to consider.

(1) If pop meets the node processed by border-lifting strengthening-sift-down,
we stop the execution of pop and let the incremental process reestablish
strong heap order below that node.

(2) If the node where border-lifting strengthening-sift-down is to be applied is
inside the submersion area, we stop this corrective action and jump to the
next since the submersion process has already establish strong heap order
below that node.

(3) If the node processed by submersion strengthening-sift-down and that by
border-lifting strengthening-sift-down meet, we stop the border-lifting pro-
cess and jump to the next since the submersion process will reestablish strong
heap order below that node.

(4) If the border-lifting strengthening-sift-down meets the frontier, we stop this
corrective action before crossing it and jump to the next.

(5) Also, when the node recorded by border-lifting strengthening-sift-down is
moved by a swapping-sift-down, the index to this node is to be updated
accordingly.

Complication 2. When extracting the minimum, we use the last element of
the insertion buffer as a replacement. However, if the insertion buffer is empty,
meaning that the submersion process must have been completed, we need to use
an element from the main heap instead. To keep the bottom heaps complete,
we move all the elements at the lowest level of the bottom heap that occupies
the rear of the array back to the empty insertion buffer. After such a move, the
minimum of this piece is not known. Fortunately, we do not need this minimum
within the next k pop operations, as there are at least a logarithmic number of
elements in the main heap that are smaller. Hence, the minimum of the involved
chunks can be found incrementally within the upcoming k modifying operations.

Complication 3. If we swapped two subtrees in the bottom heap where the
frontier consists of two intervals, there is a risk that we mess up the frontier.
Hence, we schedule the submersion process differently: We process the bottom
heaps one by one, and lock the bottom heap under consideration to skip subtree
interchanges initiated by pop in the main heap. Therefore, when the frontier
overlaps the bottom heaps, it is cut into several pieces:

(1) the interval corresponding to the unprocessed leaves of the initial bulk,
(2) the two intervals (`1, r1) and (`2, r2) in the bottom heap under consideration,

and
(3) the interval of the roots of the bottom heaps that have been handled by the

submersion process.

Locking resolves the potential conflict with pop. However, in the currently pro-
cessed bottom heap there are some nodes between the root and the frontier that
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are not yet included in the submersion process and are not in order with the
elements above or below. This is not a problem, as none of these elements can
be the minimum of the heap except after a logarithmic number of modifying
operations. Within such time, these nodes have already been handled by the
submersion process.

5 Conclusions

We described a priority queue that

(1) operates in-place,
(2) supports top and push in O(1) worst-case time, and
(3) supports pop in O(lg n) worst-case time involving at most lg n+O(1) element

comparisons.

The data structure is asymptotically optimal with respect to time, and optimal
up to additive constant terms with respect to space and element comparisons.

The related contributions prior to this work can be summarized as follows:

(1) break the 2 lg n + O(1) barrier for the number of element comparisons per-
formed per pop when push takes O(1) worst-case time [9],

(2) achieve the aforementioned desired bounds using O(n) words of extra space
[10],

(3) achieve the desired bounds using O(n) bits of extra space [8],
(4) achieve the desired bounds in-place in the amortized sense [11].

It is remarkable that we could surpass the two lower bounds known for bi-
nary heaps [13] by slightly loosening the assumptions that are intrinsic to these
lower bounds. To achieve our goals, we simultaneously imposed more order on
some nodes, by forbidding some elements at left children to be larger than those
at their right siblings, and less order on others, by allowing some elements to
possibly be smaller than those at the parents.

In retrospect, we admit that, while binary heaps [19] are practically efficient,
our data structure is somewhat impracticable. A solution [11] that achieves the
same bounds in the amortized sense is simpler, but our reference implementation
is still not competitive with binary heaps. The main questions left open are

(1) whether the number of element moves performed by pop can be reduced to
lg n+O(1),

(2) whether our constructions could be simplified, and
(3) whether there are components that are useful in practice.
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