
Policy-Based Benchmarking of Weak Heaps and

Their Relatives

Asger Bruun1, Stefan Edelkamp2,⋆, Jyrki Katajainen1,⋆⋆, and Jens Rasmussen1

1 Department of Computer Science, University of Copenhagen,
Universitetsparken 1, 2100 Copenhagen East, Denmark

2 TZI, Universität Bremen,
Am Fallturm 1, 28357 Bremen, Germany

Abstract. In this paper we describe an experimental study where we
evaluated the practical efficiency of three worst-case efficient priority
queues: 1) a weak heap that is a binary tree fulfilling half-heap ordering,
2) a weak queue that is a forest of perfect weak heaps, and 3) a run-
relaxed weak queue that extends a weak queue by allowing some nodes
to violate half-heap ordering. All these structures support delete and
delete-min in logarithmic worst-case time. A weak heap supports insert

and decrease in logarithmic worst-case time, whereas a weak queue re-
duces the worst-case running time of insert to O(1), and a run-relaxed
weak queue that of both insert and decrease to O(1). As competitors
to these structures, we considered a binary heap, a Fibonacci heap, and
a pairing heap. Generic programming techniques were heavily used in
the code development. For benchmarking purposes we developed several
component frameworks that could be instantiated with different policies.

1 Introduction

In this paper, we study addressable priority queues which store dynamic col-
lections of elements and support the operations find -min, insert , decrease (or
decrease-key), delete, delete-min, and meld . For addressable priority queues,
delete and decrease take a handle to an element as an argument, and find -min

and insert return a handle. These handles must be kept valid even though ele-
ments are moved around inside the data structures.

The most prominent priority queues described in textbooks (see, e.g. [7, 25])
include binary heaps [31], binomial queues [29], Fibonacci heaps [16], and pairing
heaps [15]. Of these, a Fibonacci heap is important for many applications since
it supports decrease in O(1) amortized time. Also, it supports the other priority-
queue operations in optimal amortized bounds: find -min, insert , and meld in
O(1) time; and delete and delete-min in O(lg n) time, n being the number of
elements stored prior to the operation.

⋆ Research partially supported by DFG grant ED 74/8-1.
⋆⋆ Partially supported by the Danish Natural Science Research Council under contract

09-060411 (project “Generic programming—algorithms and tools”).



Framework Structure delete insert decrease

single heap weak heap ⌈ lg n⌉ ⌊ lg n⌋ + 1 ⌈ lg n⌉
multiple heap weak queue 2 lg n + O(1) 2 ⌊ lg n⌋
relaxed heap run-relaxed weak queue 3 lg n + O(1) 2 4

Table 1. Worst-case number of element comparisons performed by the most important
operations on a weak heap and its variants (when find-min takes O(1) worst-case time).
Here n denotes the size of the data structure just prior to an operation.

After the publication of Fibonacci heaps, two questions were addressed:
1) Can the same time bounds be achieved in the worst case? 2) Can the time
bounds be achieved by a simpler data structure? The first question was settled
by Brodal [3] in a practically unsatisfactorily manner since in his solution, when
considering the number of element comparisons performed, the constant factor
involved in the complexity of delete-min is much higher than lg n for all rea-
sonable values of n [18]. Relaxed heaps proposed by Driscoll et al. [9] are more
practical, but they support meld in logarithmic worst-case time, which is subop-
timal. The second question has been studied by several authors, but there does
not seem to be an agreement, whether the question has been settled or not. For
more information about this issue, consult any of the recent articles [6, 13, 17,
26] and the references mentioned therein.

The research reported in this paper is related to both of the foregoing ques-
tions. Our primary objective was to evaluate the usefulness of various implemen-
tation strategies when programming weak heaps [10] and their close relatives:
weak queues and relaxed weak queues [11, 14]. Our secondary objective was to
get a complete picture of the field and compare the performance of these struc-
tures to that of some well-known competitors: binary heaps [31], Fibonacci heaps
[16], and pairing heaps [15, 28]. Of the studied data structures, a weak heap has
the same asymptotic performance as a binary heap [31], a weak queue the same
as a binomial queue [29], and a rank/run-relaxed weak queue the same as a
rank/run-relaxed heap [9]. To get an insight of the performance characteristics
of the studied data structures, in Table 1 we list the number of element com-
parisons performed by the most important operations.

To make the experimental comparison as fair as possible, we relied on policy-
based design (see, for example, the book by Alexandrescu [2]). For similar priority
queues, a separate component framework was developed. Three parameterized
frameworks were written: 1) a single-heap framework that can realize a binary
heap, relying on top-down or bottom-up heapifying, and a weak heap (Section 3);
2) a multiple-heap framework that can realize a weak queue and a binomial queue
(Section 4); and 3) a relaxed-heap framework that can realize a run-relaxed and
rank-relaxed weak queue (Section 5).

In a popular-scientific form, our results could be summarized as follows:

1) Read the masters! The original implementation of a binomial queue [29], in
essence a weak queue, turned out to be one of the best performers mainly
because of the focus put on implementation details in its description.

2



2) Priority queues that guarantee good performance in the worst-case setting
have difficulties in competing against solutions that guarantee good perfor-
mance in the amortized setting. Hence, worst-case efficient priority queues
should only be used in applications where worst-case efficiency is essential.

3) Memory management is expensive. In our early code many unnecessary mem-
ory allocations were performed. Micro benchmarking revealed that memory
management caused a significant performance slowdown.

4) In current computers, caching effects are significant. Memory-saving and
bit-packing techniques turned out to be effective.

5) For most practical values of n, the difference between lg n and O(1) is small!
Often in the literature, in particular in theoretical papers, the significance
of O(1)-time insert and decrease has been exaggerated. For heaps, for which
decrease requires logarithmic time, the loop sifting up an element is ex-
tremely tight. Unless we make element comparisons noticeable expensive, it
is difficult to come up with a faster solution.

6) For random data, the typical running time of insert , decrease, and delete

(but not delete-min) is O(1) for binary heaps, weak heaps, and weak queues.
Hence, more advanced data structures can only beat these data structures
for pathological input instances.

7) Generic component frameworks help algorithm engineers to carry out un-
biased experiments. Changing policies helped us to tune the programs sig-
nificantly while keeping the code base small.

2 Parameterized Design

The frameworks written for this study have been made part of the CPH STL
[8]. In this section we give a brief overview of the overall design of our programs.
As to the actual code, we refer to the CPH STL design documents [5, 20, 27].

When doing the implementation work, we followed the conventions set for the
CPH STL project. For example, the application programming interface (API) for
a meldable priority queue is specified in [19] (and corrected in [20]). All contain-

ers, as they are called in STL parlance, are interfaces that are decoupled from
their actual implementations. These interfaces are designed to be user friendly,
but to implement them only a smaller realizator is needed. There is a clear di-
vision of labour between the container and its realizator: 1) A client gives an
element to the container, which allocates a node and puts the element into that
node, and gives the node further to the realizator. When a realizator extracts a
node, it gives the node back to the container which takes care of the deallocation
of the node. 2) The container also provides (unidirectional) iterators to traverse
through the elements. Iterators can also be used as handles to elements.

As an example, the single-heap framework is parameterized to accept seven
type arguments: the type of the elements (or values) manipulated; the type of the
comparator used in element comparisons; the type of the allocator providing an
interface to allocate, construct, destroy, and deallocate objects; the type of the
nodes (or encapsulators) used for storing the elements; the type of the heapifier

3



used when re-establishing heap order after an element update; the type of the
resizable array used for storing the heap; and the type of the surrogate proxy
used (by iterators) for referring to the realizator (this is needed for supporting
swap in O(1) worst-case time).

Our goal was to make the frameworks generic such that they only use the
methods provided by the policies given as type parameters and make as few as-
sumptions on their functionality as possible. The key point is that the implemen-
tation of priority-queue operations find -min, insert , decrease, delete, delete-min,
and meld is exactly the same for all realizators that a framework can create.

Our parameterized design has several advantages: a high level of code reuse,
and ease of maintenance and benchmarking. By changing the parameters, one
can easily see what the effect of a particular change is. The parameterized design
also has its disadvantages: component frameworks can be difficult to understand,
the design and development can be time consuming compared to quick-and-dirty
programming, and sometimes generic programming can be difficult because of
inadequate tool support. Moreover, a framework can become a hindrance for code
optimizations, even though we did not experience any performance slowdown
because of this type of design. However, we did experience that sometimes it was
a challenge to make a change to a framework; this required that the programmer
knew many data structures well and understood consequences of the change.

3 Single-Heap Framework

Recall that in a heap-ordered tree the element stored at a node is no smaller than
the element stored at the parent of that node. The main difference between a
binary heap [31] and a weak heap [10] is that the latter is only partially ordered.
A weak heap has the following properties: 1) The element stored at a node is
smaller than or equal to any element stored in the right subtree of that node
(half-heap ordering). 2) The root of the entire structure has no left child. 3) The
right subtree of the root is a complete binary tree (in the meaning defined in
[22, Section 2.3.4.5]). In a perfect weak heap, the right subtree of the root is a
perfect binary tree (i.e. a complete binary tree where even the last level is full).

A weak heap of size n has a clever array embedding that utilizes n auxiliary
bits ri, i ∈ {0, . . . , n−1}. For location i, the left child is found at location 2i+ri

and the right child at location 2i + 1 − ri. For this purpose, ri is interpreted
as an integer in the range {0, 1}, initialized to 0. By flipping the bit, the status
of being a left or a right child can be exchanged, which is an essential property
to join two weak heaps in O(1) worst-case time. It is possible to construct a
weak heap of size n using n − 1 element comparisons, while for weak-heapsort
the number of element comparisons performed is at most n log n + 0.09n [12], a
value remarkably close to the lower bound of n log n−1.44n element comparisons
required by any sorting algorithm [23, Section 5.3.1].

Similar to binary heaps, array-embedded weak heaps can be extended to
work as priority queues. For delete-min, after exchanging the element stored
at the root with that stored at the last location, half-heap ordering is restored

4



bottom-up, joining the weak heaps that lie on the left spine of the subtree rooted
at the right child of the root. For insert , we sift up the element until half-heap
ordering is re-established. Similarly, for decrease, we start at the node that has
changed its value, and propagate the change upwards. For delete we move the
element at the last location into the place of the deleted element, and sift that
element down as in delete-min and up as in decrease.

Framework engineering. Instead of using a linked representation, we decided
to use a resizable array. To keep the iterators valid at all times, we store the
elements indirectly and maintain pointers between the array and the elements
as proposed in [7, Chapter 6]. This does not destroy the worst-case complexity,
since for a resizable array the worst-case running time of the grow and shrinkage
operations can be kept constant (see, for example, [21]). By accepting different
heapifier policies, which provide methods for sifting down and up, we can easily
switch between weak heaps and different implementations of binary heaps. For
example, one may use an alternative bottom-up sift-down strategy (see [23,
Section 5.2.3, Exercise 18] or [30]).

4 Multiple-Heap Framework

The key idea behind an improved worst case of insert is to maintain a sequence of
perfect weak heaps instead of keeping all elements in a single heap. As this makes
relocation of subheaps frequent, we rely on a pointer-based representation. Recall
that a binomial queue is a collection of heap-ordered binomial trees [29], and that
a binomial tree is a multiary tree that stores 2h elements for some integer h ≥ 0.
A weak queue is just like a binomial queue, but each multiary tree is transformed
into a binary tree by applying the standard child-sibling transformation (see, e.g.
[22, Section 2.3.2]). A binary-tree variant of a binomial tree was already utilized
by Vuillemin [29] in his tuned implementation of binomial queues, even though
he did not give any name for the data structure.

For brevity, we call the perfect weak heaps maintained just heaps. Further-
more, we call the data structure used to keep track of the heaps a heap store.
The heaps are maintained in size order, starting from the smallest. The basic
operations to be supported include inject which inserts a new heap into the heap
store, and eject which removes the smallest heap from the heap store. For inject

it is essential that the size of the new heap is no greater than that of the smallest
heap currently in a weak queue.

After delete-min, when determining the root that contains the new minimum,
we have to iterate over the heaps. Therefore, the number of heaps has to be kept
low; the worst-case minimum for the number of heaps is ⌊lg n⌋ + 1. That is,
when new heaps arrive, occasional joins are necessary. A simple way to maintain
a heap store is to utilize the connection to binary numbers: If a weak queue
stores n elements and the binary representation of n is 〈b0, b1, . . . , b⌊lg n⌋〉, the
heap store contains a heap of size 2i if and only if bi = 1. The main problem
with this invariant is that sometimes inject has to perform a logarithmic number
of joins, each taking O(1) worst-case time.

5



There are several alternative strategies to implement the heap store such that
both inject and eject take O(1) time in the worst case still keeping the number of
heaps logarithmic. One of the simplest approaches, mentioned already in [4], is
to rely on redundant numbers. If di denotes the number of heaps of height i and
di ∈ {0, 1, 2}, the heap store can keep the cardinality sequence 〈d0, d1, . . . , d⌊lg n⌋〉

regular, i.e. in the form
(

0 | 1 | 01∗2
)∗

using the normal syntax for regular
expressions (see, for example, [1]). If after each inject the first two heaps of the
same size are joined, the regularity of the cardinality sequence will be preserved
and the number of heaps will never be larger than ⌊lg n⌋+ 1 [14]. For eject , the
smallest heap is extracted and the cardinality sequence is updated accordingly.

Framework engineering. There were several alternative ways of implementing
the nodes. In our baseline version, every node stores an element and pointers
to its left child, right child, and parent. To make swapping of nodes cheaper,
we also tried variants where elements were stored indirectly, but these versions
turned out to be slower than the baseline version. In an extreme case, only two
pointers per node would be necessary to cover the parent-child relationships, as
observed by Brown [4], but this space optimization did not pay off; the space
optimized versions were considerably slower than the baseline version.

The framework supports two types of heap stores: one that maintains a proxy
for each heap and keeps these proxies in a linked list, and another that main-
tains the roots in a linked list by reusing the pointers at the nodes. The latter
idea goes back to Vuillemin [29]. Also, following Vuillemin’s original proposal
the heights of the heaps are maintained in a bit vector, which can be stored in a
single word, since the heights are between 0 and ⌊ lg n⌋ + 1. Both types of heap
stores could be equipped with the binary number system or redundant binary
number system. For the redundant system, different strategies for maintaining
the information about the pairs of heaps having the same size were tried. The
best alternative turned out to a preallocated stack storing pointers to the first
member of each pair. In general, all solutions relying on dynamic storage man-
agement were noticeable slower than the versions that avoided it. Overall, the
overhead incurred by the redundant system turned out to be negligible.

We observed that there was a huge difference in the typical running times
for the two known ways of dealing with delete. Brown [4] called the two strate-
gies top-down and bottom-up. The top-down strategy sifts up the node being
deleted to the root and removes the root, whereas the bottom-up strategy finds
a replacement node for the node being deleted, makes the replacement, and sifts
down or up the new node. In a typical case, assuming that we are not deleting
the minimum, the amount of work done by the bottom-up approach is O(1),
whereas the amount of work involved in the top-down approach is logarithmic.

5 Relaxed-Heap Framework

In relaxed weak queues the new ingredient is that the half-ordering violations
incurred by decrease operations are resolved by marking. When there are too
many marked nodes, the number of marked nodes is reduced. Driscoll et al. [9]

6



introduced this idea in their relaxed heaps, and Elmasry et al. [14] observed that
the idea carries over into the binary-tree setting. The other operations find -min,
insert , delete, delete-min, and meld can be implemented as for weak queues.

We call the data structure used to keep track of all markings a mark store.
The fundamental operations to be supported include mark which marks a node
to denote that a half-ordering violation may occur at that node, unmark which
removes a marking, and reduce which removes one or more unspecified markings.
A run is a maximal sequence of two or more marked nodes that are consecutive
on the left spine of a subtree. More formally, a node is a member of a run if it is
marked, a left child, and its parent is marked. A node is the leader of a run if it
is marked, its left child is marked, and it is either a right child or a left child of
a non-marked parent. A marked node that is neither a member nor a leader of
a run is called a singleton. If at some height there are more than one singleton,
these singletons form a team. To summarize, the set of all nodes is divided into
four disjoint categories: non-marked nodes, members, leaders, and singletons.

A pair (type, height) with type being either non-marked, member, leader, or
singleton; and height being a value in the range {0, 1, . . . , ⌊lg n⌋} denotes the
state of a node. The states are stored explicitly at the nodes. Transformations
used when reducing the number of marked nodes induce a constant number of
state transitions. A simple example of such a transformation is a join, where the
height of the new root is increased by one.

Other transformations (see Fig. 1) are cleaning, parent, sibling, and pair
transformations. A cleaning transformation rotates a marked left child to a
marked right one, provided that its sibling and parent are non-marked. A parent

transformation reduces the number of marked nodes or pushes the marking one
level up. A sibling transformation reduces the number of markings by eliminat-
ing two markings, while generating a new marking one level up. A pair trans-

formation has a similar effect, but it operates on disconnected trees. These four
transformations are combined to perform a singleton or run transformation.

In a run-relaxed weak queue [14], which is similar to a run-relaxed heap [9],
an invariant is maintained that, after each priority-queue operation, the number
of markings is never larger than ⌊ lg n⌋. When this bound is exceeded, a singleton
or a run transformation is applied to restore the invariant. The running time of
decrease can be guaranteed to be O(1) in the worst case. In a rank-relaxed weak

queue [11], which is similar to a rank-relaxed heap [9], the transformations are
applied in an eager way by performing as many reduce operations as possible af-
ter each priority-queue operation that introduces new markings. The worst-case
cost of decrease can be logarithmic, but the amortized cost is a constant. From
a practical perspective, amortization leads to a slightly more efficient implemen-
tation, as verified in [11].

Framework engineering. The first implementation of a mark store that sup-
ports mark , unmark , and reduce in O(1) worst-case time was described in [9].
In this solution it was necessary to maintain a doubly-linked list of leaders, a
doubly-linked list of teams, a doubly-linked list of singletons at each height, and
a resizable array of pointers to the beginning of each singleton list. In our engi-

7



A CA B C D D B

v

u

w v

u

w

A B C D A B C D

A B A C DC D A B

A B A DC D A

or

or
b)

C D C D

C

D

u

v w

wv

B

C B C B

v

v

v

u

u

u uw

w

w

w

u

u

u

u

w

w

v v

vv

B D  C

D

w

u

or

or orand

B

w

z

u

uw

w z

zy

y

y

C A B D B

c)

d)

a)

A

A A

Fig. 1. Primitives used by reduce: a) cleaning transformation, b) parent transformation,
c) sibling transformation, and d) pair transformation.

neered implementation we use no lists, but keep pointers to the marked nodes in
a preallocated array and maintain another preallocated array of bit vectors, each
occupying a single word, indicating which of the marked nodes are singletons of
particular height. Additionally, we need one bit vector to denote which of the
marked nodes are leaders and another to indicate which of the singleton sets
have more than one node. To allow fast unmark , every marked node stores an
index referring to the pointer array maintained in the mark store. The bit-vector
class features the fast selection of the most significant 1-bit.

6 Experiments

In our benchmarks we compared priority queues from the weak-heap family
(weak heap, weak queue, and run-relaxed weak queue) to their closest competi-
tors (binary heap [31], Fibonacci heap [16], and pairing heap [28]). The last two

8



were taken from LEDA (version 6.2) [24]. The other data structures were the
engineered versions that we implemented for the CPH STL [8].

We carried out several experiments for different types of input data (worst-
case and randomly-generated instances) in different environments (compilers and
computers varied) considering different kinds of performance indicators (number
of element comparisons, clock cycles, and CPU time). The results obtained did
not vary much across the tested environments. Also, the results obtained by the
clock-cycle and CPU-time measurements were similar.

When engineering our implementations we carried out several micro-bench-
marks. Due to space limitations, we do not report any detailed results on them,
but refer to [5]. For randomly-generated data, the average running time of
insert , decrease, and delete (but not delete-min) is O(1) for binary and weak
heaps. Since these structures are simple, other more advanced structures have
difficulties in beating them. For the structures having good amortized time
bounds, insert and decrease are fast because most work is delayed till delete

and delete-min. Due to space limitations, we leave out the results for randomly-
generated input data, but present them in the full version of this paper.

We find the results of synthetic benchmarks involving the basic operations
interesting and report these results here. These benchmarks were conducted on a
laptop computer (model Intel R© CoreTM2 CPU T5600 @ 1.83GHz) under Ubuntu
9.10 operating system (Linux kernel 2.6.31-19-generic) using g++ C++ compiler
(gcc version 4.4.1 with options -DNDEBUG -Wall -std=c++0x -pedantic -x c++

-fno-strict-aliasing -O3). The size of L2 cache of this computer was about
2 MB and that of the main memory 1 GB. The input data was integers of
type long long and, for the LEDA data structures, pairs of type (long long,
struct empty) since in LEDA the elements are expected to be (priority, infor-
mation) pairs. Besides comparing integer elements with their built-in comparison
function, the comparator increased a global counter to gather comparison counts.

In order to avoid the problem caused by a bounded clock granularity, which in
the test computer was 10 milliseconds, for given n we repeated each experiment
⌈106/n⌉ times, each time with a new priority queue. The standard dual-loop
strategy was used to eliminate the time taken by all initializations. All running
times are reported in microseconds, and they are average times per operation.

In Fig. 2, 3, 4, and 5 we give the average running times used and the number
of element comparisons performed per insert , decrease, delete, and delete-min,
respectively. In the insert experiment, the integers between 0 and n − 1 were
inserted in reversed sorted order which forced binary and weak heaps to use
logarithmic time for each operation. In spite of this, the running times were
competitive. In the decrease experiment, the integers were inserted in random
order, and thereafter the values were updated such that each new value became
the new minimum element; the time used by decrease operations was measured.
This arrangement guaranteed that decrease took logarithmic time on an average
for a binary heap, weak heap, and weak queue. Even in such extreme situation,
these three data structures were competitive against theoretically more robust
solutions. In the delete experiment, the integers were inserted in random order

9



and extracted in their insertion order; the time used by delete operations was
measured. All our implementations relied on the bottom-up deletion strategy;
this experiment confirmed that this was a good choice. In the delete-min ex-
periment, the integers were inserted in random order, and the minimum was
extracted until the data structure became empty; the time used by delete-min

operations was measured. Even if a weak heap is optimal with respect to the
number of element comparisons, a weak queue was faster. For all problem sizes,
a Fibonacci heap used about 3 times more time than a weak queue.

The average running times reported can be used to estimate the overhead
caused by the worst-case behaviour. For data structures that do not provide good
performance in the worst-case setting, the running times of individual operations
can fluctuate considerably. For example, for binary and weak heaps the worst-
case running time of a single insert was linear since we relied on std::vector,
not on a worst-case efficient resizable array. For Fibonacci and pairing heaps
the worst-case running time of a single delete-min is linear. Even for Vuillemin’s
implementation of a weak queue the running times of insert and decrease can
vary between Θ(1) and Θ(lg n). In applications, where such fluctuations are
intolerable, only a run-relaxed weak queue can guarantee stable behaviour, but
as shown, this stability has its price.

In particular for randomly-generated input data, the performance of simple
data structures like binary and weak heaps is good. These simple data structures
fall in short only when melding has to be efficient. Namely, for our implementa-
tions, melding two weak heaps (or binary heaps) of size m and n, m ≤ n, takes
Θ(m lg n) time in the worst case. Even though more efficient implementations
are possible, one should consider using some of other data structures instead.

References

1. A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Tech-

niques, & Tools, 2nd Edition, Pearson Education, Inc. (2007).
2. A. Alexandrescu, Modern C++ Design: Generic Programming and Design Patterns

Applied, Addison-Wesley (2001).
3. G. S. Brodal, Worst-case efficient priority queues, Proceedings of the 7th Annual

ACM-SIAM Symposium on Discrete Algorithms, ACM/SIAM (1996), 52–58.
4. M. R. Brown, Implementation and analysis of binomial queue algorithms, SIAM

Journal on Computing 7, 3 (1978), 298–319.
5. A. Bruun, Effektivitetsm̊aling p̊a krydsninger af svage og binomiale prioritetskøer,

CPH STL Report 2010-2, Department of Computer Science, University of Copen-
hagen (2010).

6. T. M. Chan, Quake heaps: A simple alternative to Fibonacci heaps, Unpublished
manuscript (2009).

7. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-

rithms, 3th Edition, The MIT Press (2009).
8. Department of Computer Science, University of Copenhagen, The CPH STL, Web-

site accessible at http://cphstl.dk/ (2000–2010).
9. J. R. Driscoll, H. N. Gabow, R. Shrairman, and R. E. Tarjan, Relaxed heaps: An

alternative to Fibonacci heaps with applications to parallel computation, Commu-

nications of the ACM 31, 11 (1988), 1343–1354.

10



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

10
3

10
4

10
5

10
6

10
7

E
x
ec

u
ti

o
n
 t

im
e 

p
er

 n
 [

µs
]

n [logarithmic scale]

Operation sequence: insertn

binary heap
weak heap
Fibonacci heap
pairing heap
run−relaxed weak queue
weak queue

 0

 5

 10

 15

 20

 25

10
3

10
4

10
5

10
6

10
7

N
u
m

b
er

 o
f 

el
em

en
t 

co
m

p
ar

is
o
n
s 

p
er

 n

n [logarithmic scale]

Operation sequence: insertn

binary heap
weak heap
weak queue
run−relaxed weak queue
Fibonacci heap
pairing heap

Fig. 2. insert : CPU times and comparison counts for different priority queues.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

10
3

10
4

10
5

10
6

10
7

E
x
ec

u
ti

o
n
 t

im
e 

p
er

 n
 [

µs
]

n [logarithmic scale]

Operation sequence: decreasen

binary heap
weak queue
weak heap
run−relaxed weak queue
Fibonacci heap
pairing heap

 0

 5

 10

 15

 20

 25

10
3

10
4

10
5

10
6

10
7

N
u
m

b
er

 o
f 

el
em

en
t 

co
m

p
ar

is
o
n
s 

p
er

 n

n [logarithmic scale]

Operation sequence: decreasen

binary heap
weak queue
weak heap
run−relaxed weak queue
Fibonacci heap
pairing heap

Fig. 3. decrease: CPU times and comparison counts for different priority queues.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

10
3

10
4

10
5

10
6

10
7

E
x
ec

u
ti

o
n
 t

im
e 

p
er

 n
 [

µs
]

n [logarithmic scale]

Operation sequence: deleten

run−relaxed weak queue
Fibonacci heap
binary heap
weak queue
weak heap
pairing heap

 0

 5

 10

 15

10
3

10
4

10
5

10
6

10
7

N
u
m

b
er

 o
f 

el
em

en
t 

co
m

p
ar

is
o
n
s 

p
er

 n

n [logarithmic scale]

Operation sequence: deleten

Fibonacci heap
pairing heap
binary heap
run−relaxed weak queue
weak heap
weak queue

Fig. 4. delete: CPU times and comparison counts for different priority queues.

 0

 1

 2

 3

 4

 5

 6

 7

10
3

10
4

10
5

10
6

10
7

E
x
ec

u
ti

o
n
 t

im
e 

p
er

 n
 [

µs
]

n [logarithmic scale]

Operation sequence: delete−minn

Fibonacci heap
pairing heap
run−relaxed weak queue
binary heap
weak heap
weak queue

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

10
3

10
4

10
5

10
6

10
7

N
u
m

b
er

 o
f 

el
em

en
t 

co
m

p
ar

is
o
n
s 

p
er

 n

n [logarithmic scale]

Operation sequence: delete−minn

Fibonacci heap
binary heap
run−relaxed weak queue
weak queue
pairing heap
weak heap

Fig. 5. delete-min: CPU times and comparison counts for different priority queues.

11



10. R. D. Dutton, Weak-heap sort, BIT 33, 3 (1993), 372–381.
11. S. Edelkamp, Rank-relaxed weak queues: Faster than pairing and Fibonacci heaps?,

Technical Report 54, TZI, Universität Bremen (2009).
12. S. Edelkamp and I. Wegener, On the performance of Weak-Heapsort, Proceedings

of the 17th Annual Symposium on Theoretical Aspects of Computer Science, Lecture

Notes in Computer Science 1770, Springer-Verlag (2000), 254–266.
13. A. Elmasry, Violation heaps: A better substitute for Fibonacci heaps, E-print

0812.2851v1, arXiv.org (2008).
14. A. Elmasry, C. Jensen, and J. Katajainen, Relaxed weak queues: An alternative to

run-relaxed heaps, CPH STL Report 2005-2, Department of Computer Science,
University of Copenhagen (2005).

15. M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan, The pairing heap:
A new form of self-adjusting heap, Algorithmica 1, 1 (1986), 111–129.

16. M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved
network optimization algorithms, Journal of the ACM 34, 3 (1987), 596–615.

17. B. Haeupler, S. Sen, and R. E. Tarjan, Rank-pairing heaps, Proceddings of the 17th

Annual European Symposium on Algorithms, Lecture Notes in Computer Science

5757, Springer-Verlag (2009), 659–670.
18. C. Jensen, Private communication (2009).
19. J. Katajainen, Project proposal: A meldable, iterator-valid priority queue, CPH

STL Report 2005-1, Department of Computer Science, University of Copenhagen
(2005).

20. J. Katajainen, Priority-queue frameworks: Programs, CPH STL Report 2009-7,
Department of Computer Science, University of Copenhagen (2009).

21. J. Katajainen and B. B. Mortensen, Experiences with the design and implemen-
tation of space-efficient deques, Proceedings of the 5th International Workshop on

Algorithm Engineering, Lecture Notes in Computer Science 2141, Springer-Verlag
(2001), 39–50.

22. D. E. Knuth, Fundamental Algorithms, The Art of Computer Programming 1,
3rd Edition, Addison Wesley Longman (1997).

23. D. E. Knuth, Sorting and Searching, The Art of Computer Programming 3,
2nd Edition, Addison Wesley Longman (1998).

24. K. Mehlhorn and S. Näher, The LEDA Platform of Combinatorial and Geometric

Computing, Cambridge University Press (1999).
25. K. Mehlhorn and P. Sanders, Algorithms and Data Structures: The Basic Toolbox,

Springer-Verlag (2008).
26. R. Paredes, Graphs for metric space searching, Ph.D. Thesis, Department of Com-

puter Science, University of Chile (2008).
27. J. Rasmussen, Implementing run-relaxed weak queues, CPH STL Report 2008-1,

Department of Computer Science, University of Copenhagen (2008).
28. J. T. Stasko and J. S. Vitter, Pairing heaps: Experiments and analysis, Commu-

nications of the ACM 30, 3 (1987), 234–249.
29. J. Vuillemin, A data structure for manipulating priority queues, Communications

of the ACM 21, 4 (1978), 309–315.
30. I. Wegener, Bottom-up-Heapsort, a new variant of Heapsort beating, on an average,

Quicksort (if n is not very small), Theoretical Computer Science 118 (1993), 81–98.
31. J. W. J. Williams, Algorithm 232: Heapsort, Communications of the ACM 7, 6

(1964), 347–348.

12


