
Strictly-Regular Number System and
Data Structures?

Amr Elmasry1, Claus Jensen2, and Jyrki Katajainen3

1 Max-Planck Institut für Informatik, Saarbrücken, Germany
2 The Royal Library, Copenhagen, Denmark

3 Department of Computer Science, University of Copenhagen, Denmark

Abstract. We introduce a new number system that we call the strictly-
regular system, which efficiently supports the operations: digit-increment,
digit-decrement, cut, concatenate, and add. Compared to other number
systems, the strictly-regular system has distinguishable properties. It is
superior to the regular system for its efficient support to decrements,
and superior to the extended-regular system for being more compact by
using three symbols instead of four. To demonstrate the applicability of
the new number system, we modify Brodal’s meldable priority queues
making deletion require at most 2 lgn+O(1) element comparisons (im-
proving the bound from 7 lgn + O(1)) while maintaining the efficiency
and the asymptotic time bounds for all operations.

1 Introduction

Number systems are powerful tools of the trade when designing worst-case-
efficient data structures. As far as we know, their usage was first discussed in
the seminar notes by Clancy and Knuth [1]. Early examples of data structures
relying on number systems include finger search trees [2] and binomial queues
[3]. For a survey, see [4, Chapter 9]. The problem with the normal binary number
representation is that a single increment or decrement may change all the digits
in the original representation. In the corresponding data structure, this may give
rise to many changes that would result in weak worst-case performance.

The characteristics of a positional number system N are determined by the
constraints imposed on the digits and the weights corresponding to them. Let
rep(d,N) = 〈d0, d1, . . . , dr−1〉 be the sequence of digits representing a positive
integer d in N . (An empty sequence can be used to represent zero.) By conven-
tion, d0 is the least-significant digit and dr−1 6= 0 is the most-significant digit.

? c© 2010 Springer-Verlag. This is the authors’ version of the work. The
original publication is available at www.springerlink.com with DOI
10.1007/978-3-642-13731-0 4.

The work of the authors was partially supported by the Danish Natural Science
Research Council under contract 09-060411 (project “Generic programming—
algorithms and tools”). A. Elmasry was supported by the Alexander von Humboldt
Foundation and the VELUX Foundation.

The value of d in N is val(d,N) =
∑r−1

i=0 di · wi, where wi is the weight cor-
responding to di. As a shorthand, we write rep(d) for rep(d,N) and val(d) for
val(d,N). In a redundant number system, it is possible to have val(d) = val(d′)
while rep(d) 6= rep(d′). In a b-ary number system, wi = bi.

A sequence of digits is said to be valid in N if all the constraints imposed by
N are satisfied. Let d and d′ be two numbers where rep(d) = 〈d0, d1, . . . , dr−1〉
and rep(d′) =

〈
d′0, d

′
1, . . . , d

′
r′−1

〉
are valid. The following operations are defined.

increment(d, i): Assert that i ∈ {0, 1, . . . , r}. Perform ++di resulting in d′, i.e.
val(d′) = val(d) + wi. Make d′ valid without changing its value.

decrement(d, i): Assert that i ∈ {0, 1, . . . , r − 1}. Perform --di resulting in d′,
i.e. val(d′) = val(d)− wi. Make d′ valid without changing its value.

cut(d, i): Cut rep(d) into two valid sequences having the same value as the
numbers corresponding to 〈d0, d1, . . . , di−1〉 and 〈di, di+1, . . . , dr−1〉.

concatenate(d, d′): Concatenate rep(d) and rep(d′) into one valid sequence that
has the same value as

〈
d0, d1, . . . , dr−1, d

′
0, d
′
1, . . . , d

′
r′−1

〉
.

add(d, d′): Construct a valid sequence d′′ such that val(d′′) = val(d) + val(d′).

One should think that a corresponding data structure contains di components
of rank i, where the meaning of rank is application specific. A component of rank
i has size si ≤ wi. If si = wi, we see the component as perfect. In general, the
size of a structure corresponding to a sequence of digits need not be unique.

The regular system [1], called the segmented system in [4], comprises the
digits {0, 1, 2} with the constraint that every 2 is preceded by a 0 possibly having
any number of 1’s in between. Using the syntax for regular expressions (see, for
example, [5, Section 3.3]), every regular sequence is of the form

(
0 | 1 | 01∗2

)∗
.

The regular system allows for the increment of any digit with O(1) digit changes
[1, 6], a fact that can be used to modify binomial queues to accomplish insert
at O(1) worst-case cost. Brodal [7] used a zeroless variant of the regular system,
comprising the digits {1, 2, 3}, to ensure that the sizes of his trees are exponential
with respect to their ranks. For further examples of structures that use the
regular system, see [8, 9]. To be able to perform decrements with O(1) digit
changes, an extension was proposed in [1, 6]. Such an extended-regular system
comprises the digits {0, 1, 2, 3} with the constraint that every 3 is preceded by a 0
or 1 possibly having any number of 2’s in between, and that every 0 is preceded
by a 2 or 3 possibly having any number of 1’s in between. For examples of
structures that use the extended-regular system, see [6, 10, 11].

In this paper, we introduce a number system that we call the strictly-regular
system. It uses the digits {0, 1, 2} and allows for both increments and decrements
with O(1) digit changes. The strictly-regular system contains less redundancy
and is more compact, achieving better constant factors while supporting a larger
repertoire of operations. We expect the new system to be useful in several other
contexts in addition to the applications we mention here.

Utilizing the strictly-regular system, we introduce the strictly-regular trees.
Such trees provide efficient support for adding a new subtree to the root, detach-
ing an existing one, cutting and concatenating lists of children. We show that

2

Table 1: Known results on the worst-case comparison complexity of priority-
queue operations when decrease is not considered and find -min has O(1) cost.
Here n and m denote the sizes of priority queues.

Source insert delete meld

[12] O(1) lgn+O(1) –

[11] O(1) lgn+O(lg lgn) O(lg(min {n,m}))
[7] (see Section 3.1) O(1) 7 lgn+O(1) O(1)

[13] O(1) 3 lgn+O(1) O(1)

this paper O(1) 2 lgn+O(1) O(1)

the number of children of any node in a strictly-regular tree is bounded by lg n,
where n is the number of descendants of such node.

A priority queue is a fundamental data structure which stores a dynamic col-
lection of elements and efficiently supports the operations find -min, insert , and
delete. A meldable priority queue also supports the operation meld efficiently. As
a principal application of our number system, we implement an efficient meld-
able priority queue. Our best upper bound is 2 lg n+O(1) element comparisons
per delete, which is achieved by modifying the priority queue described in [7].
Table 1 summarizes the related known results.

The paper is organized as follows. We introduce the number system in Section
2, study the application to meldable priority queues in Section 3, and discuss
the applicability of the number system to other data structures in Section 4.

2 The Number System

Similar to the redundant binary system, in our system any digit di must be 0,
1, or 2. We call 0 and 2 extreme digits. We say that the representation is strictly
regular if the sequence from the least-significant to the most-significant digit is of
the form

(
1+ | 01∗2

)∗(
ε | 01+

)
. In other words, such a sequence is a combination

of zero or more interleaved 1+ and 01∗2 blocks, which may be followed by at
most one 01+ block. We use wi = 2i, implying that the weighted value of a 2 at
position i is equivalent to that of a 1 at position i+ 1.

2.1 Properties

An important property that distinguishes our number system from other systems
is what we call the compactness property, which is defined in the next lemma.

Lemma 1. For any strictly-regular sequence,
∑r−1

i=0 di is either r − 1 or r.

Proof. The sum of the digits in a 01∗2 block or a 1∗ block equals the number of
digits in the block, and the sum of the digits in the possibly trailing 01+ block
is one less than the number of digits in that block. ut

3

Note that the sum of digits
∑r−1

i=0 di for a positive integer in the regular
system is between 1 and r; in the zeroless system, where di ∈ {1, 2, . . . h}, the
sum of digits is between r and h · r; and in the zeroless regular representation,
where di ∈ {1, 2, 3} [7], the sum of digits is between r and 2r.

An important property, essential for designing data structures with expo-
nential size in terms of their rank, is what we call the exponentiality property.
Assume si ≥ θi/c and s0 = 1, for fixed real constants θ > 1 and c > 0. A number

system has such property if for each valid sequence
∑r−1

i=0 di ·si ≥ θr/c−1 holds.

Lemma 2. For the strictly-regular system, the exponentiality property holds by
setting θ = c = Φ, where Φ is the golden ratio.

Proof. Consider a sequence of digits in a strictly-regular representation, and
think about di = 2 as two 1’s at position i. It is straightforward to verify that
there exists a distinct 1 whose position is at least i, for every i from 0 to r − 2.
In other words, we have

∑r−1
i=0 di ·si ≥

∑r−2
i=0 si. Substituting with si ≥ Φi−1 and

s0 = 1, we obtain
∑r−1

i=0 di · si ≥ 1 +
∑r−3

i=0 Φ
i ≥ Φr−1 − 1. ut

The exponentiality property holds for any zeroless system by setting θ = 2
and c = 1. The property also holds for any θ when dr−1 ≥ θ; this idea was used
in [8], by imposing dr−1 ≥ 2, to ensure that the size of a tree of rank r is at least
2r. On the other hand, the property does not hold for the regular system.

2.2 Operations

It is convenient to use the following subroutines that change two digits but not
the value of the underlying number.

fix -carry(d, i): Assert that di ≥ 2. Perform di ← di − 2 and di+1 ← di+1 + 1.
fix -borrow(d, i): Assert that di ≤ 1. Perform di+1 ← di+1 − 1 and di ← di + 2.

Temporarily, a digit can become a 3 due to ++di or fix -borrow , but we always
eliminate such a violation before completing the operations. We demonstrate in
Algorithm increment (decrement) how to implement the operation in question
with at most one fix -carry (fix -borrow), which implies Theorem 1. The correct-
ness of the algorithms follows from the case analysis of Table 2.

Theorem 1. Given a strictly-regular representation of d, increment(d, i) and
decrement(d, i) incur at most three digit changes.

Algorithm increment(d, i)

1: ++di
2: Let db be the first extreme digit before di, db ∈ {0, 2, undefined}
3: Let da be the first extreme digit after di, da ∈ {0, 2, undefined}
4: if di = 3 or (di = 2 and db 6= 0)
5: fix -carry(d, i)
6: else if da = 2
7: fix -carry(d, a)

4

Algorithm decrement(d, i)

1: Let db be the first extreme digit before di, db ∈ {0, 2, undefined}
2: Let da be the first extreme digit after di, da ∈ {0, 2, undefined}
3: if di = 0 or (di = 1 and db = 0 and i 6= r − 1)
4: fix -borrow(d, i)
5: else if da = 0
6: fix -borrow(d, a)
7: --di

By maintaining pointers to all extreme digits in a circular doubly-linked list,
the extreme digits are readily available when increments and decrements are
carried out at either end of a sequence.

Corollary 1. Let 〈d0, d1, . . . , dr−1〉 be a strictly-regular representation of d. If
such sequence is implemented as two circular doubly-linked lists, one storing all
the digits and another all extreme digits, any of the operations increment(d, 0),
increment(d, r − 1), increment(d, r), decrement(d, 0), and decrement(d, r − 1)
can be executed at O(1) worst-case cost.

Theorem 2. Let 〈d0, d1, . . . , dr−1〉 and
〈
d′0, d

′
1, . . . , d

′
r′−1

〉
be strictly-regular rep-

resentations of d and d′. The operations cut(d, i) and concatenate(d, d′) can be
executed with O(1) digit changes. Assuming without loss of generality that r ≤ r′,
add(d, d′) can be executed at O(r) worst-case cost including at most r carries.

Proof. Consider the two sequences resulting from a cut. The first sequence is
strictly regular and requires no changes. The second sequence may have a pre-
ceding 1∗2 block followed by a strictly-regular subsequence. In such case, we
perform a fix -carry on the 2 ending such block to reestablish strict regularity.
A catenation requires a fix only if rep(d) ends with a 01+ block and rep(d′) is
not equal to 1+. In such case, we perform a fix -borrow on the first 0 of rep(d′).
An addition is implemented by adding the digits of one sequence to the other
starting from the least-significant digit, simultaneously updating the pointers
to the extreme digits in the other sequence, while maintaining strict regularity.
Since each increment propagates at most one fix -carry , the bounds follow. ut

2.3 Strictly-Regular Trees

We recursively define a strictly-regular tree such that every subtree is as well a
strictly-regular tree. For every node x in such a tree

– the rank, in brief rank(x), is equal to the number of the children of x;
– the cardinality sequence, in which entry i records the number of children of

rank i, is strictly regular.

The next lemma directly follows from the definitions and Lemma 1.

5

Table 2: di is displayed in bold. da is the first extreme digit after di, k is a
positive integer, α denotes any combination of 1+ and 01∗2 blocks, and ω any
combination of 1+ and 01∗2 blocks followed by at most one 01+ block.

(a) Case analysis for increment(d, i).

Initial configuration Action Final configuration

α01∗2 di ← 3; fix -carry(d, i) α01∗11

α01∗21kω di ← 3; fix -carry(d, i) α01∗121k−1ω

α01∗201∗2ω di ← 3; fix -carry(d, i) α01∗111∗2ω

α01∗201k di ← 3; fix -carry(d, i) α01∗111k

α1 di ← 2; fix -carry(d, i) α01

α11kω di ← 2; fix -carry(d, i) α021k−1ω

α101∗2ω di ← 2; fix -carry(d, i) α011∗2ω

α101k di ← 2; fix -carry(d, i) α011k

α01∗11∗2 di ← 2; fix -carry(d, a) α01∗21∗01

α01∗11∗21kω di ← 2; fix -carry(d, a) α01∗21∗021k−1ω

α01∗11∗201∗2ω di ← 2; fix -carry(d, a) α01∗21∗011∗2ω

α01∗11∗201k di ← 2; fix -carry(d, a) α01∗21∗011k

α01∗2 di ← 1; fix -carry(d, a) α11∗01

α01∗21kω di ← 1; fix -carry(d, a) α11∗021k−1ω

α01∗201∗2ω di ← 1; fix -carry(d, a) α11∗011∗2ω

α01∗201k di ← 1; fix -carry(d, a) α11∗011k

α01∗11∗ di ← 2 α01∗21∗

ω0 di ← 1 ω1

α01k di ← 1 α11k

(b) Case analysis for decrement(d, i).

Initial configuration Action Final configuration

α02ω fix -borrow(d, i); di ← 1 α11ω

α01k2ω fix -borrow(d, i); di ← 1 α101k−12ω

α01k fix -borrow(d, i); di ← 1 α101k−1

α01∗12ω fix -borrow(d, i); di ← 2 α01∗21ω

α01∗11k2ω fix -borrow(d, i); di ← 2 α01∗201k−12ω

α01∗11k fix -borrow(d, i); di ← 2 α01∗201k−1

α11∗02ω fix -borrow(d, a); di ← 0 α01∗21ω

α11∗01k2ω fix -borrow(d, a); di ← 0 α01∗201k−12ω

α11∗01k fix -borrow(d, a); di ← 0 α01∗201k−1

α01∗21∗02ω fix -borrow(d, a); di ← 1 α01∗11∗21ω

α01∗21∗01k2ω fix -borrow(d, a); di ← 1 α01∗11∗201k−12ω

α01∗21∗01k fix -borrow(d, a) ; di ← 1 α01∗11∗201k−1

α11∗ di ← 0 α01∗

α01∗1 di ← 0 α01∗

α01∗21∗ di ← 1 α01∗11∗

6

Lemma 3. Let 〈d0, d1, . . . dr−1〉 be the cardinality sequence of a node x in a
strictly-regular tree. If the last block of this sequence is a 01+ block, then rank(x) =
r − 1; otherwise, rank(x) = r.

The next lemma illustrates the exponentiality property for such trees.

Lemma 4. A strictly-regular tree of rank r has at least 2r nodes.

Proof. The proof is by induction. The claim is clearly true for nodes of rank
0. Assume the hypothesis is true for all the subtrees of a node x with rank r.
Let y be the child of x with the largest rank. From Lemma 3, if the last block
of the cardinality sequence of x is a 01+ block, then rank(x) = rank(y). Using
induction, the number of nodes of y’s subtree is at least 2r, and the lemma
follows. Otherwise, the cardinality sequence of x only contains 01∗2 and 1+

blocks. We conclude that there exists a distinct subtree of x whose rank is at
least i, for every i from 0 to r − 1. Again using induction, the size of the tree
rooted at x must be at least 1 +

∑r−1
i=0 2i = 2r. ut

The operations that we would like to efficiently support include: adding a
subtree whose root has rank at most r to the children of x; detaching a subtree
from the children of x; splitting the sequence of the children of x, those having the
highest ranks and the others; and concatenating a strictly-regular subsequence
of trees, whose smallest rank equals r, to the children of x.

In accordance, we need to support implementations corresponding to the
subroutines fix -carry and fix -borrow . For these, we use link and unlink .

link(T1, T2): Assert that the roots of T1 and T2 have the same rank. Make one
root the child of the other, and increase the rank of the surviving root by 1.

unlink(T): Detach a child with the largest rank from the root of tree T . If T has
rank r, the resulting two trees will have ranks either r− 1, r− 1 or r− 1, r.

Subroutine fix -carry(d, i), which converts two consecutive digits di = 2 and
di+1 = q to 0, q + 1 is realizable by subroutine link . Subroutine fix -borrow(d, i),
which converts two consecutive digits di = 0 and di+1 = q to 2, q−1 is realizable
by subroutine unlink that results in two trees of equal rank. However, unlinking
a tree of rank r may result in one tree of rank r−1 and another of rank r. In such
case, a fix -borrow corresponds to converting the two digits 0, q to 1, q. For this
scenario, as for Table 2(b), it is also easy to show that all the cases following a
decrement lead to a strictly-regular sequence. We leave the details for the reader
to verify.

3 Application: Meldable Priority Queues

Our motivation is to investigate the worst-case bound for the number of element
comparisons performed by delete under the assumption that find -min, insert ,
and meld have O(1) worst-case cost. From the comparison-based lower bound
for sorting, we know that if find -min and insert only involve O(1) element com-
parisons, delete has to perform at least lg n−O(1) element comparisons, where
n is the number of elements stored prior to the operation.

7

3.1 Brodal’s Meldable Priority Queues

Our development is based on the priority queue presented in [7]. In this section,
we describe this data structure. We also analyse the constant factor in the bound
on the number of element comparisons performed by delete, since the original
analysis was only asymptotic.

The construction in [7] is based on two key ideas. First, insert is supported
at O(1) worst-case cost. Second, meld is reduced to insert by allowing a priority
queue to store other priority queues inside it. To make this possible, the whole
data structure is a tree having two types of nodes: �-nodes (read: square or
type-I nodes) and �-nodes (read: circle or type-II nodes). Each node stores a
locator to an element, which is a representative of the descendants of the node;
the representative has the smallest element among those of its descendants.

Each node has a non-negative integer rank. A node of rank 0 has no �-
children. For an integer r > 0, the �-children of a node of rank r have ranks
from 0 to r − 1. Each node can have at most one �-child and that child can
be of arbitrary rank. The number of �-children is restricted to be at least one
and at most three per rank. More precisely, the regularity constraint posed is
that the cardinality sequence is of the form

(
1 | 2 | 12∗3

)∗
. This regular number

system allows for increasing the least significant digit at O(1) worst-case cost.
In addition, because of the zeroless property, the size of a subtree of rank r is
at least 2r and the number of children of its root is at most 2r. The rank of the
root is required to be zero. So, if the tree holds more than one element, the other
elements are held in the subtree rooted at the �-child of the root.

To represent such multi-way tree, the standard child-sibling representation
can be used. Each node stores its rank as an integer, its type as a Boolean, a
pointer to its parent, a pointer to its sibling, and a pointer to its �-child having
the highest rank. The children of a node are kept in a circular singly-linked
list containing the �-children in rank order and the �-child after the �-child
of the highest rank; the �-child is further connected to the �-child of rank 0.
Additionally, each node stores a pointer to a linked list, which holds pointers
to the first �-node in every group of three consecutive nodes of the same rank
corresponding to a 3 in the cardinality sequence.

A basic subroutine used in the manipulation of these trees is link . For node
u, let element(u) denote the element associated with u. Let u and v be two
nodes of the same rank such that element(u) ≤ element(v). Now, link makes
v a �-child of u. This increases the rank of u by one. Note that link has O(1)
worst-case cost and performs one element comparison.

The minimum element is readily found by accessing the root of the tree, so
find -min is easily accomplished at O(1) worst-case cost.

When inserting a new element, a node is created. The new element and
those associated with the root and its �-child are compared; the two smallest
among the three are associated with the root and its �-child, and the largest is
associated with the created node. Hereafter, the new node is added as a �-child
of rank 0 to the �-child of the root. Since the cardinality sequence of that node

8

was regular before the insertion, only O(1) structural changes are necessary to
restore the regularity constraint. That is, insert has O(1) worst-case cost.

To meld two trees, the elements associated with the root and its �-child are
taken from both trees and these four elements are sorted. The largest element is
associated with a �-child of the root of one tree. Let T be that tree, and let S
be the other tree. The two smallest elements are then associated with the root
of S and its �-child. Accordingly, the other two elements are associated with
the root of T and its �-child. Subsequently, T is added as a rank-0 �-child to
the �-child of the root of S. So, also meld has O(1) worst-case cost.

When deleting an element, the corresponding node is located and made the
current node. If the current node is the root, the element associated with the �-
child of the root is swapped with that associated with the root, and the �-child
of the root is made the current node. On the other hand, if the current node
is a �-node, the elements associated with the current node and its parent are
swapped until a �-node is reached. Therefore, both cases reduce to a situation
where a �-node is to be removed.

Assume that we are removing a �-node z. The actual removal involves finding
a node that holds the smallest element among the elements associated with the
children of z (call this node x), and finding a node that has the highest rank
among the children of x and z (call this node y). To reestablish the regularity
constraint, z is removed, x is promoted into its place, y is detached from its
children, and all the children previously under x and y, plus y itself, are moved
under x. This is done by performing repeated linkings until the number of nodes
of the same rank is one or two. The rank of x is updated accordingly.

In the whole deletion process O(lg n) nodes are handled and O(1) work is
done per node, so the total cost of delete is O(lg n). To analyse the number
of element comparisons performed, we point out that a node with rank r can
have up to 2r �-children (not 3r as stated in [7]). Hence, finding the smallest
element associated with a node requires up to 2 lg n+O(1) element comparisons,
and reducing the number of children from 6 lg n + O(1) to lg n + O(1) involves
5 lg n + O(1) element comparisons (each link requires one). To see that this
bound is possible, consider the addition of four numbers 1, 1232k, 2222k, and
1232k (where the least significant digits are listed first), which gives 1211k+12.

Our discussion so far can be summarized as follows.

Theorem 3. Brodal’s meldable priority queue, as described in [7], supports find -
min, insert, and meld at O(1) worst-case cost, and delete at O(lg n) worst-case
cost including at most 7 lg n+O(1) element comparisons.

3.2 Our Improvement

Consider a simple mixed scheme, in which the number system used for the
children of �-nodes is perfect, following the pattern 1∗, and that used for the
children of �-nodes is regular. This implies that the �-nodes form binomial trees
[3]. After this modification, the bounds for insert and meld remain the same if
we rely on the delayed melding strategy. However, since each node has at most

9

lg n + O(1) children, the bound for delete would be better than that reported
in Theorem 3. Such an implementation of delete has three bottlenecks: finding
the minimum, executing a delayed meld , and adding the �-children of a �-node
to another node. In this mixed system, each of these three procedures requires
at most lg n + O(1) element comparisons. Accordingly, delete involves at most
3 lg n+O(1) element comparisons. Still, the question is how to do better!

The major change we make is to use the strictly-regular system instead of
the zeroless regular system. We carry out find -min, insert , and meld similar to
[7]. We use subroutine merge to combine two trees. Let y and y′ be the roots
of these trees, and let r and r′ be their respective ranks where r ≤ r′. We
show how to merge the two trees at O(r) worst-case cost using O(1) element
comparisons. For this, we have to locate the nodes representing the extreme
digits closest to r in the cardinality sequence of y′. Consequently, by Theorems
1 and 2, a cut or an increment at that rank is done at O(1) worst-case cost. If
element(y′) ≤ element(y), add y as a �-child of y′, update the rank of y′ and
stop. Otherwise, cut the �-children of y′ at r. Let the two resulting sublists be
C and D, C containing the nodes of lower rank. Then, concatenate the lists
representing the sequence of the �-children of y and the sequence D. We regard
y′ together with the �-children in C and y′’s earlier �-child as one tree whose
root y′ is a �-node. Finally, place this tree under y and update the rank of y.

Now we show how to improve delete. If the node to be deleted is the root, we
swap the elements associated with the root and its �-child, and let that �-node
be the node z to be deleted. If the node to be deleted is a �-node, we repeatedly
swap the elements associated with this node and its parent until the current
node is a �-node (Case 1) or the rank of the current node is the same as that of
its parent (Case 2). When the process stops, the current node z is to be deleted.

Case 1: z is a �-node. Let x denote the node that contains the smallest element
among the children of z (if any). We remove z, lift x into its place, and make
x into a �-node. Next, we move all the other �-children of z under x by
performing an addition operation, and update the rank of x. Since z and x
may each have had a �-child, there may be two �-children around. In such
case, merge such two subtrees and make the root of the resulting tree the
�-child of x.

Case 2: z is a �-node. Let p be the parent of z. We remove z and move its
�-children to p by performing an addition operation. As rank(p) = rank(z)
before the addition, rank(p) = rank(z) or rank(z) + 1 after the addition. If
rank(p) = rank(z) + 1, to ensure that rank(p) remains the same as before
the operation, we detach the child of p that has the highest rank and merge
the subtree rooted at it with the subtrees rooted at the �-children of p and z
(there could be up to two such subtrees), and make the root of the resulting
tree the �-child of p.

Let r be the maximum rank of a node in the tree under consideration. Climb-
ing up the tree to locate a node z has O(r) cost, since after every step the new
current node has a larger rank. In Case 1, a �-node is deleted at O(r) cost in-
volving at most r element comparisons when finding its smallest child. In Cases

10

1 and 2, the addition of the �-children of two nodes has O(r) cost and requires
at most r element comparisons. Additionally, applying the merge operation on
two trees (Case 1) or three trees (Case 2) has O(r) cost and requires O(1) elem-
ent comparisons. Thus, the total cost is O(r) and at most 2r + O(1) element
comparisons are performed. Using Lemma 4, r ≤ lg n, and the claim follows.

In summary, our data structure improves the original data structure in two
ways. First, by Lemma 4, the new system reduces the maximum number of
children a node can have from 2 lg n to lg n. Second, the new system breaks the
bottleneck resulting from delayed melding, since two subtrees can be merged with
O(1) element comparisons. The above discussion implies the following theorem.

Theorem 4. Let n denote the number of elements stored in the data structure
prior to a deletion. There exists a priority queue that supports find -min, insert,
and meld at O(1) worst-case cost, and delete at O(lg n) worst-case cost including
at most 2 lg n+O(1) element comparisons.

4 Other Applications

Historically, it is interesting to note that in early papers a number system sup-
porting increments and decrements of an arbitrary digit was constructed by
putting two regular systems back to back, i.e. di ∈ {0, 1, 2, 3, 4, 5}. It is rel-
atively easy to prove the correctness of this system. This approach was used
in [14] for constructing catenable deques, in [9] for constructing catenable fin-
ger search trees, and in [8] for constructing meldable priority queues. (In [8],
di ∈ {2, 3, 4, 5, 6, 7} is imposed, since an extra constraint that di ≥ 2 was required
to facilitate the violation reductions and to guarantee the exponentiality prop-
erty.) Later on, it was realized that the extended-regular system, di ∈ {0, 1, 2, 3},
could be utilized for the same purpose (see, for example, [6]). The strictly-regular
system may be employed in applications where these more extensive number sys-
tems have been used earlier. This replacement, when possible, would have two
important consequences:

1. The underlying data structures become simpler.
2. The operations supported may become a constant factor faster.

While surveying papers that presented potential applications to the new num-
ber system, we found that, even though our number system may be applied, there
were situations where other approaches would be more favourable. For example,
the relaxed heap described in [11] relies on the zeroless extended-regular system
to support increments and decrements. Naturally, the strictly-regular system
could be used instead, and this would reduce the number of trees that have to
be maintained. However, the approach of using a two-tier structure as described
in [11] makes the reduction in the number of trees insignificant since the amount
of work done is proportional to the logarithm of the number of trees. Also, a
fat heap [6] uses the extended-regular binary system for keeping track of the
potential violation nodes and the extended-regular ternary system for keeping

11

track of the trees in the structure. However, we discovered that a priority queue
with the same functionality and efficiency can be implemented with simpler tools
without using number systems at all. The reader is warned: number systems are
powerful tools but they should not be applied haphazardly.

Up till now we have ignored the cost of accessing the extreme digits in the
vicinity of a given digit. When dealing with the regular or the extended-regular
systems this can be done at O(1) cost by using the guides described in [8]. In
contrary, for our number system, accessing the extreme digits in the vicinity of
any digit does not seem to be doable at O(1) cost. However, the special case of
accessing the first and last extreme digits is soluble at O(1) cost.

In some applications, like fat heaps [6] and the priority queues described
in [8], the underlying number system is ternary. We have not found a satisfac-
tory solution to extend the strictly-regular system to handle ternary numbers
efficiently; it is an open question whether such an extension exists.

References

1. Clancy, M., Knuth, D.: A programming and problem-solving seminar. Technical
Report STAN-CS-77-606, Dept. of Computer Science, Stanford University (1977)

2. Guibas, L.J., McCreight, E.M., Plass, M.F., Roberts, J.R.: A new representation
for linear lists. In: Proceedings of the 9th Annual ACM Symposium on Theory of
Computing, ACM (1977) 49–60

3. Vuillemin, J.: A data structure for manipulating priority queues. Communications
of the ACM 21(4) (1978) 309–315

4. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press
(1998)

5. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
& Tools. 2nd edn. Pearson Education, Inc. (2007)

6. Kaplan, H., Shafrir, N., Tarjan, R.E.: Meldable heaps and Boolean union-find. In:
Proceedings of the 34th Annual ACM Symposium on Theory of Computing, ACM
(2002) 573–582

7. Brodal, G.S.: Fast meldable priority queues. In: Proceedings of the 4th Interna-
tional Workshop on Algorithms and Data Structures. Volume 955 of Lecture Notes
in Computer Science., Springer-Verlag (1995) 282–290

8. Brodal, G.S.: Worst-case efficient priority queues. In: Proceedings of the 7th
Annual ACM-SIAM Symposium on Discrete Algorithms, ACM/SIAM (1996) 52–
58

9. Kaplan, H., Tarjan, R.E.: Purely functional representations of catenable sorted
lists. In: Proceedings of the 28th Annual ACM Symposium on Theory of Comput-
ing, ACM (1996) 202–211

10. Elmasry, A.: A priority queue with the working-set property. International Journal
of Foundations of Computer Science 17(6) (2006) 1455–1465

11. Elmasry, A., Jensen, C., Katajainen, J.: Two-tier relaxed heaps. Acta Informatica
45(3) (2008) 193–210

12. Elmasry, A., Jensen, C., Katajainen, J.: Multipartite priority queues. ACM Trans-
actions on Algorithms 5(1) (2008) Article 14

13. Jensen, C.: A note on meldable heaps relying on data-structural bootstrapping.
CPH STL Report 2009-2, Department of Computer Science, University of Copen-
hagen (2009) Available at http://cphstl.dk.

12

14. Kaplan, H., Tarjan, R.E.: Persistent lists with catenation via recursive slow-down.
In: Proceedings of the 27th Annual ACM Symposium on Theory of Computing,
ACM (1995) 93–102

13

