
Adaptable Component Frameworks∗

Usingvector from the C++ Standard Library as an Example

Jyrki Katajainen Bo Simonsen
Department of Computer Science, University of Copenhagen,Denmark

{jyrki,bosim}@diku.dk

Abstract
The CPH STL is a special edition of the STL, the containers and
algorithms part of the C++ standard library. The specification of
the generic components of the STL is given in the C++ standard.
Any implementation of the STL, e.g. the one that ships with your
standard-compliant C++ compiler, should provide at least one real-
ization for each container that has the specified characteristics with
respect to performance and safety. In the CPH STL project, our
goal is to provide several alternative realizations for each STL con-
tainer. For example, for associative containers we can provide al-
most any kind of balanced search tree. Also, we do provide safe and
compact versions of each container. To ease the maintenanceof this
large collection of implementations, we have developed component
frameworks for the STL containers. In this paper, we describe the
design and implementation of a component framework forvector,
which is undoubtedly the most used container of the C++ standard
library. In particular, we specify the details of avector implemen-
tation that is safe with respect to referential integrity and strong ex-
ception safety. Additionally, we report the experiences and lessons
learnt from the development of component frameworks which we
hope to be of benefit to persons engaged in the design and imple-
mentation of generic software libraries.

Categories and Subject Descriptors D.2.1 [Software Engineer-
ing]: Design Tools and Techniques—Software libraries; D.2.3
[Software Engineering]: Coding Tools and Techniques—Object-
oriented programming; D.2.1 [Software Engineering]: Reusable
Software—Reusable libraries; D.3.3 [Programming Languages]:
Language Constructs and Features—Frameworks; E.1 [Data
Structures]: Arrays; H.3.4 [Information Storage and Retrieval]:
Systems and Software—Performance evaluation (efficiency and ef-
fectiveness)

General Terms Algorithms, Design, Experimentation, Lan-
guages, Performance

Keywords Generic Programming, C++ Standard Library, STL,
Robustness, Efficiency

∗ Partially supported by the Danish Natural Science ResearchCouncil un-
der contract 272-05-0272 (project “Generic programming—algorithms and
tools”).

c© 2009 ACM. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution. The definitive version was
published in Proceedings of the ACM SIGPLAN Workshop on Generic Programming,
http://doi.acm.org/10.1145/nnnnnn.nnnnnn.

Reprinted from WGP’09,, Proceedings of the ACM SIGPLAN Workshop on
Generic Programming, August 30, 2009, Edinburgh, Scotland, UK., pp. 1–12.

1. Introduction
The design and implementation of the standard-libraryvector has
a great pedagogical value when illustrating the use of various pro-
gramming language facilities and programming techniques.For ex-
ample, in his recent textbook [39], Stroustrup devotes three of the
27 chapters (115 pages or about 9% of the whole book) to avector
implementation that is roughly equivalent to the standard-library
vector. However, textbooks have seldom enough space to describe
a completevector implementation. The book on the standard tem-
plate library (STL) by Plauger et al. [29] is an interesting exception;
their completevector implementation consists of 365 logical lines
of code (LOC), excluding the partial specialization for Boolean el-
ements, which is even longer than the primary class template. (Ob-
serve that in our use of the LOC metric we ignore comment lines
and lines with a single parenthesis, and we calculate long state-
ments as single lines.) For other complete implementations, we re-
fer to the source code shipped with your C++ compiler and the
documentation of the Silicon Graphics Inc. implementationof the
STL [35].

This work is part of the Copenhagen STL (CPH STL) project
initiated in 2000 [13]. The goal in this project is to

• provide an enhanced edition of the STL, i.e. the containers and
algorithms part of the C++ standard library [9, 19];

• study and analyse existing specifications for and implementa-
tions of the STL to determine the best approaches to optimiza-
tion;

• place the programs developed in the public domain and make
them freely available on the Internet;

• provide benchmark results to give library users better grounds
for assessing the quality of different STL components; and

• carry out experimental algorithmic research.

The architecture of the CPH STL is described in [22]. Two impor-
tant tools used when describing the foundations of the library are
C++ concepts [15] and design patterns [14]. In this paper we use
these tools in an informal way; for a pathway to a more formal
treatment, we refer to the above-mentioned papers and the refer-
ences mentioned therein.

The STL is organized around three fundamental concepts: con-
tainers, iterators, and algorithms. Containers are class templates
that provide iterators, and algorithms are function templates that
work for various kinds of iterators. It is this decoupling ofalgo-
rithms and containers, and type parameterization in general, that
makes the components of the STL so flexible. In the modern lit-
erature on C++ design (see, for example, the book by Alexan-
drescu [2]), it is advocated that even a greater degree of flexibil-
ity is achieved by parameterizing generic components withpoli-
cieswhich are classes or class templates describing configurable

1

behaviour. The paradigm is referred to as policy-based design. Ac-
cording to our terminology, acomponent frameworkis a skeleton of
a software component which is to be filled in with implementation-
specific details in the form of policies.

In this paper, we describe the design and implementation of a
component framework for thevector container, we report the ex-
periences and lessons learnt from its development, and we evaluate
the efficiency of the existing realizations. In total, 15+ developers
have been involved in the development ofvector in the CPH STL.
Some of the progress reports have been published on the project
website [21, 24].

1.1 Standard-compliantvector and relevant extensions

A vector stores a sequence of elements such that elements can be
accessed by their indices and also by their iterators at constant cost.
Compared to anarray, whose size is fixed (at compile time or at
run-time), the size of avector can vary and memory management
is handled automatically. In the computing literature, this data
structure has been discussed under many names, including dynamic
array [16, 33], dynamic table [11], extendible array [32], extensible
array [8], flexible array (term used in Algol 68), growable array
[31], resizable array [10], and variable-length array [6, 37]. As to
the vector class in C++, its full specification together with all
associated operations can be found in the C++ standard [9, 19].
Thevector class has two template parameters that allow the user
to specify the type of the elements stored and the type of the
allocator used for allocating and deallocating memory. We have
extended the interface with additional template parameters, which
allow the user to specify the type of the data structure used for
storing the elements, the type of mutable iterators and immutable
iterators (colloquiallyconst iterators) used when traversing over
the sequence. Because of the default values provided, theseextra
template parameters do not affect the normal use of the container.

There are several aspects in the specification ofvector [9, 19]
that may not be satisfactory for all users.

Referential integrity: In some applications avector may be used
to maintain references to other objects, and these objects may
again keep references back to the array. Many programmers
have been bitten by the bug that, because of the reallocationof
the underlying array, the references back are no more valid.This
is an error that is difficult to find. Simply, the rules specified in
the C++ standard, when and under what circumstances iterators
and references to elements are kept valid, are difficult to re-
member. Hence, the memory burden on working programmers
could be reduced if references and iterators were kept validby
all operations, except when an element is erased.

Strong exception safety:A container operation isstrongly excep-
tion safe[1] if it completes successfully, or throws an exception
and makes no changes to the manipulated container and leaks
no resources. The rules specified in the C++ standard, which
operations guarantee strongly exception safety and under what
circumstances, are difficult to remember. Hence, there is a need
for avector for which all operations guarantee the strong form
of exception safety.

Unspecified behaviour: In the C++ standard, the behaviour of
front, back, andpop_back member functions is not specified
if the underlying container is empty. Clearly, there is a need for
a vector for which the behaviour of these member functions
is specified. Also, the behaviour ofoperator[] is unspecified
when the array index is out of bounds. Often this comes as a big
surprise for novice programmers. Even though range checking
is done byat member function, this function is seldom used.
Hence, there is a need for avector for which range checking
can be switched on and off when desired.

Contiguous storage:The C++ standard requires that the elements
of a vector are stored contiguously in memory. However, in
the literature many interesting implementations have beenpro-
posed which do not keep the elements in a contiguous mem-
ory segment (see, for example, [10, 16, 21, 37]). Naturally,this
requirement is important in some low-level applications rely-
ing on address-of operations, but there should also be spacefor
vector implementations that do not fulfil this requirement.

Space utilization: In the C++ standard, no space bounds are speci-
fied for the container classes. Because of performance consider-
ations, standardvector implementations do not release the al-
located memory even if the number of elements gets smaller. As
pointed out in [8], in some applications, like long-runningpro-
grams in servers, such a behaviour can be unacceptable. Many
such programs running simultaneously can fill the whole mem-
ory although only a small portion of the memory is in actual
use. A natural requirement is that no container should use more
than linear extra space, linear in the number of elements stored.
However, in some applications even this amount can be un-
acceptable, since elements may be large and the space usage
is measured in elements (not in bytes or words). More space-
economicalvector implementations are known: Ifn denotes
the number of elements stored, the boundO(

√
n) on the amount

of extra space, i.e. the amount of space used in addition to the
elements themselves, is known to be achievable [10, 21, 37].

Amortized time bounds: Many member functions ofvector are
required to haveO(1) cost in the amortized sense. In this point
the C++ standard is unclear since the sequence of operations
over which the amortization is performed is never specified.
Due to reallocations, the worst-case cost of a single operation
like push_back can be linear, as is the case for the most com-
mon implementations. This can have fatal consequences for
other data structures that use avector. For example, a binary
heap is expected to support its operations at the logarithmic
worst-case cost, but if avector is used in its implementa-
tion, this worst-case behaviour does not hold any more [8]. It
is known that allvector operations can be supported atO(1)
worst-case cost, except that insertions and erasures haveO(

√
n)

worst-case cost if onlyO(
√
n) extra space is available [21] and,

for an arbitrary small but fixedε > 0, O(nε) worst-case cost
if O(n1−ε) extra space is available [33]. Clearly, it is relevant
to providevector implementations that guarantee good worst-
case performance for all operations.

In a normal implementation of the STL, one realization is
provided for each container. In the CPH STL, we want to pro-
vide at least three predefined realizations for each container: one
that is fast, one that is safe, and one that is space efficient.As
to vector, the user can select betweencphstl::fast vector,
cphstl::safe vector, andcphstl::compact vector. More-
over,cphstl::vector is guaranteed to be standard compliant.

The fast version is implemented by expanding the array by a
constant fraction and never contracting the array. The safeversion
is based on the same expansion strategy, but it also applies asimilar
contraction strategy (compare [8]). The safe implementation pro-
vides referential integrity and strong exception safety. The point is
that the safety guarantees are provided without relaxing the per-
formance requirements specified in the C++ standard. This is in a
stark contrast with the earlier work (see, e.g. [1]), where the tech-
nique of making a complete copy is offered as an option to achieve
the strong guarantee of exception safety. However, it took along
time for us to get this version correct. For example, the solution
sketched in an earlier working paper [20] was not fully correct, but
a bug was found during the implementation phase. The compact

2

version is implemented using a hashed array tree [37] as the under-
lying data structure.

By examining the specification in the C++ standard carefully, an
observant reader can see that the requirements are producedby re-
verse engineering one particular implementation, one thatis similar
to cphstl::fast vector storing elements contiguously. Hence,
it should not come as a surprise that other implementations are not
fully standard compliant. In particular, our safe and compact ver-
sions do not store the elements in a contiguous memory segment.
As a consequence of this the elements are not addressable. Ad-
ditionally, we have to rely on different kinds of proxy objects so
some operations, likeoperator[] andoperator* for iterators,
return an implementation-defined proxy object, instead of arefer-
ence orconst reference to an element as required by the standard.
For the very same reasonvector<bool> is sometimes said to be
an almost container with an almost random-access iterator since it
does not fulfil all the requirements specified for the container and
random-access iterator concepts.

1.2 Outline of the present paper

Instead of just providing some predefined behaviours, we develop
a component framework which allows us (and others) to extend
the library with new facilities. Using the terms of Oppermann and
Simm [30], the CPH STL is bothadaptive, i.e. its components are
able to change their behaviour based on the type arguments given
by the user, andadaptable, i.e. the components can be changed and
extended by the user who can provide new implementations forthe
template arguments accepted by the component framework. Our
framework can be used for realizing most of the knownvector im-
plementations. The component framework forvector is described
in Sections 2, 3, and 4. When developing this framework, we took
inspiration from a similar framework introduced for binarysearch
trees by Austern et al. [5]; a component framework for associative
containers is also available at the CPH STL [36].

We had several reasons for introducing component frameworks
into our library. We wanted a high level of code reuse, ease ofmain-
tenance, and fair benchmarking. Now it is possible to provide a new
vector kernel by writing a few member functions, whereas a com-
pletevector implementation [9] must provide 40 member func-
tions and seven operators. Also, to a high degree we have beenable
to avoid copy-paste code which eases the maintenance of the library
considerably. Furthermore, we can do benchmarking by changing
the kernels and policies, and keeping the other parts of the code un-
changed. This really shows the effect of a particular change. Hence,
hopefully, our benchmarks report differences in the performance of
data structures, not the cleverness of the programmers. We make
some additional remarks on reusability in Section 6.

Naturally, it is interesting when a container library can automat-
ically adapt itself to different usage scenarios, and perform opti-
mizations and other tasks without user intervention. In thelitera-
ture, the topic has been discussed under the name active libraries
[12]. For a long time, generic programming has known to be a
promising approach for generating customized software compo-
nents. However, in this point we are more pragmatic than earlier
authors. In our opinion, in C++, the facilities provided for compile-
time reflection and metaprogramming are still too primitiveto be of
great practical value. We discuss adaptivity from our pointof view
in Section 7.

Our generic component frameworks are open and adaptable.
In the literature many different words are used to describe adap-
tation activities, including customization, configuration, modifica-
tion, extension, personalization, and tailoring. In different contexts
the meaning of these words can vary. When we talk about adapt-
ability, we mean that the library offers several levels of usage (sim-

ilar thoughts appear in a more general context, for example,in
[17, 27]):

Normal generic use:A generic class template defines a family of
classes. As part of a normal instantiation process a user can
select a class from this family by specifying the types to be
used for substituting the template parameters. The user can
use the components of the CPH STL in the same way as the
components of the C++ standard library.

Selective use:The user can choose between alternative predefined
behaviours, like between the fast, safe, and compact container
implementations. A type of use, where parameters impact the
performance of components, is common in generic software
libraries. For example, in LEDA [26] some container classes
accept additional implementation arguments.

Integrated use: The user can compose existing—internal or
external—components. For example, in the Boost graph library
[34] the performance of many graph algorithms can be tuned by
non-functional parameters.

Extended use:The user can extend the library by writing new
components. Already the users of the C++ standard library can
provide their own allocators and comparators, but we go even
further. We allow our users to design and implement their own
iterators, policies, and container kernels.

To facilitate extending use, it is necessary that the sourcecode of
the library is made available for the users. We close our discussion
on adaptability in Section 8.

Our contribution can be summarized as follows.

• We show how a component (vector) from theC++ standard
library can be extended to a component framework still provid-
ing the same functionality as required by the C++ standard. Our
description can serve as a starting point for future work when
building similar component frameworks.

• We show that a framework-based implementation of a compo-
nent (vector) has an acceptable performance overhead. (See
Section 5.)

• We show that a component (vector) can be made to guarantee
the strong form of exception safety for all container operations
and fulfil the same theoretical performance requirements as
the corresponding unsafe variant. The programming techniques
used have already shown to be useful when implementing other
safe components.

• We show that the cost of safety can be high in terms of actual
running time. This is mainly due to the loss of spatial locality
in memory references and the overhead caused by additional
memory management. (See Section 5.)

We hope that the ideas presented in this paper will be of benefit to
other persons engaged in the design and implementation of generic
software libraries, or in the tools used in their development.

2. Decomposition
In this section we give an overview of our adaptable component
framework forvector, and in the following two sections we de-
scribe some of the architectural elements in greater detail. The de-
sign of a component framework can be seen as an application of
the template-method design pattern [14]. However, since werely
on C++ templates, not on inheritance, the implementation-specific
details are specified by the template arguments given for thecom-
ponent framework. Hence, the design is also related to the strategy
design pattern.

3

During the years the CPH STL has become a multi-interface li-
brary which supports the C++ standard library [9], LEDA [26], and
its own application-programming interfaces (APIs) for several data
structures. All APIs are decoupled from their implementations us-
ing the bridge design pattern. Because of this design choice, we can
conveniently support several APIs. Many of the member functions
provided by these APIs are actually convenience functions,so to
start with we extracted a core of all the member functions. Wecall
this core arealizator. The iterators are also decoupled from the re-
alizators in order to provide a common means of realizing items for
the LEDA APIs and iterators for the STL APIs.

After this initial phase, the realizator interface forvector has
to provide 20 member functions. The realizator class specifies a
skeleton that must be filled in by the user with policies. A policy is
the generic variant of a strategy used in the strategy designpattern
[2]. A policy can be used to customize the class it is given to.In the
original design of the STL, allocators and comparators can be seen
as policies that are given to the container classes.

In our source of inspiration [5], a component framework for bi-
nary search trees was introduced. It is natural that the mainvari-
ability between the different variants of balanced search trees is
the balancing mechanism, which can be placed in a policy class.
Other variabilities are the searching mechanism used for searching
specific elements and the encapsulation mechanism used for stor-
ing the information (nodes can store a colour or some other bal-
ancing information). To create a similar component framework for
vector, we had to do a variability and commonality analysis of the
data structures proposed in the literature. Such an analysis revealed
that most implementations are built on the following concepts:

Slot: This is a memory location which stores a single element, or
a pointer to a proxy that stores the element or knows where the
element is stored.

Segment:All vector implementations maintain a collection of
memory segments, each consisting of a sequence of slots.

Directory: There is a directory that keeps track of the memory
segments reserved. A directory can be of varying complexity; if
there is only one memory segment in all, the directory is trivial,
but more complicated alternatives are also possible.

We decided to package the management of memory segments
and the directory inside a smallkernelwhich is given as a template
argument to the framework. There is a clear contract betweenthe
framework and the selected kernel: the framework takes in the
elements and moves them around, and the kernel takes care of
memory management. As a concept a kernel is defined by the
minimal interface which any implementation must comply with.
LetN denote the type of sizes andP the type of a proxy functioning
as a substitute for a reference to an element. In addition to a
constructor and destructor, avector kernel should provide the
following operations:

N size() const: Get the number of elements stored.

void size(N n): Set the number of elements stored ton.

N max size() const: Get the maximum number of elements that
can be stored.

N capacity() const: Get the current capacity of the kernel.

P access(N i): Convert a logical indexi to a reference to the data
stored at the corresponding slot.

void grow(N δ): Increase the number of elements stored byδ ∈ N.

void shrink(): Fit the capacity to the number of elements stored.

In addition to the kernel, the framework accepts the types of
elements and an allocator as template arguments. The full concep-

STL container

Provide an API
to be used by
the clients [9].

element
allocator
realizator
iterator

LEDA container

Provide an API
to be used by
the clients [3].

element
realizator
encapsulator

framework

Delegate the
work to
different
policies.

element
allocator
kernel
surrogate
encapsulator
reference

iterator

Provide a
uniform way of
traversing over
the elements.

realizator
surrogate
encapsulator
reference

kernel

Handle
memory
management.

element
allocator
encapsulator

encapsulator

Encapsulate an
element in a
small object.

element
allocator

surrogate

Function as a
substitute for a
kernel.

kernel
iterator

reference

Encapsulate a
reference to an
element in a
small object.

element
allocator
encapsulator

Figure 1. The big picture. In each CRC card, the class/concept
name is listed in the upper-left corner, the responsibilities appear
on the left below the name and the collaborators on the right.

tual specification of theValueType and allocator concepts can be
found in the C++ standard. A container can access the elements
via iterators. The conceptual specification of iterator concepts can
also be found in the C++ standard. To implement an iterator, one
should somehow specify the slot, segment, and directory in which
the element pointed to lies. When this information is available, it
is possible to locate the element and to advance an iterator forward
and backward arbitrary many steps.

The purpose of the proxy design pattern is to provide a means
of controlling access to an object. We have found it necessary
to employ several different proxies in order to achieve manyof
the desirable safety properties. The proxies used appear intwo
varieties. Asurrogateis used as a substitute for some real subject;
to implement this proxy, we maintain a single pointer to the real
subject and access the real subject via this pointer. Anencapsulator
[28] is used as a replacement for a real subject such that the proxy
and the real subject are functionally identical. In particular, we need
a surrogate for a kernel and we have to encapsulate an element, a
reference to an element, and a pointer to an element. The purpose
of proxies will become clearer when we give more details on the
safe variants ofvector.

In Figure 1, we use the CRC cards [7] to summarize the most
important concepts involved.

The user can assemble a realizator by specifying the policies re-
quired by the framework. For example, to get avector that stores
the elements directly inside the slots and maintains the elements
in a single contiguous memory segment, the user could write the
code given in Listing 1. Observe that, as proposed in [4], we have
combined the implementations of mutable iterators and immutable
iterators into the same class; the selection of a proper iterator is
done by a Boolean value.

4

Listing 1. An example of the use of the framework.
1 #include ”direct -encapsulator .h++”
2 #include ”dynamic -array .h++”
3 #include <memory> / / defines std : : al locator
4 #include ”rank -iterator .h++”
5 #include ”stl -vector .h++” / / defines cphstl : : vector
6 #include ”vector -framework .h++”
7

8 int main () {
9 enum {immutable = true };

10

11 typedef int V ;
12 typedef std : :allocator<V> A ;
13 typedef cphstl : :direct_encapsulator<V , A> E ;
14 typedef cphstl : :dynamic_array<V , A , E> K ;
15 typedef cphstl : :vector_framework<V , A , K> R ;
16 typedef cphstl : :rank_iterator<R> I ;
17 typedef cphstl : :rank_iterator<R , immutable> J ;
18 typedef cphstl : :vector<V , A , R , I , J> C ;
19

20 C v ;
21 }

3. Kernels
In this section we will briefly describe the kernels which areavail-
able in ourvector framework at the moment. The kernels are dy-
namic array [8], hashed array tree [37], and levelwise-allocated pile
[21]. The selection of these kernels was based on the resultsof pre-
vious benchmarks performed in our research group and the desir-
able properties of the data structures. A dynamic array can be used
to realize avector that stores the elements contiguously, hashed
array tree is space efficient, and levelwise-allocated pileoffers good
worst-case running times. Throughout this section we assume that
the elements are stored directly at the slots; in the next section we
will consider other options to encapsulate elements.

Each kernel has asizewhich denotes the number of elements
stored, and acapacitywhich denotes the actual number of slots
allocated for storing the elements. Ifn denotes the size andN the

capacity of a kernel, we useλ
def
= n/N to denote the currentload

factor. Whenλ = 1 and we want to increase the size of the kernel,
an expansion is necessary and theexpansion factorα determines
the capacity just after the expansion such thatN = αn andλ =
1/α. When the load factor becomes too small, a contraction may
take place; thecontraction thresholdβ specifies the minimum
acceptable load factor.

The worst-case space consumption of the data structures is
summarized in Table 1 for some typical values ofα andβ.

Table 1. Worst-case space consumption of ourvector kernels
when elements are stored directly at the slots. Heren denotes the
number of elements stored.

Kernel Space consumption
Dynamic array (α = 2; β = 1/4) 6n +O(1)
Hashed array tree (α = 4; β = 1/8) n+O(

√
n)

Levelwise-allocated pile (α = 2; β = 1/2) 2n+O(lg n)

3.1 Dynamic array

A dynamic arrayis an array, the capacity of which varies as a
function of its size. The elements are kept in a contiguous memory
segment, and when this segment has no empty slots or too many
empty slots, the elements are reallocated to another array.Actually,
a dynamic array is a family of data structures depending on the

expansion factor and the contraction threshold used. By peeking
at the source code ofstd::vector that comes with our compiler
(gcc version 4.2.4), we saw that it used expansion factorα = 2 and
contraction thresholdβ = 0 (no contraction done). In our current
implementation,α = 2 andβ = 1/4, but theshrink operation
can be switched to do nothing if wanted.

The reorganization of the array is done as follows: Allocate
a new array of load factor1/α, copy the elements from the old
array into the new array, deallocate the old array, and adjust the
pointer which gives the start address of the array. The reason why
we have slack between1 and 1/α, and 1/α and β is that the
reorganization is rather expensive because of memory allocations
and copy operations. If we did not have this extra slack, a sequence
of intermixed insertion and erasure operations could make this data
structure very expensive and unattractive.

Since the elements are stored in an array, the efficiency of all
array operations is the same as for a fixed-sized array, except the
cost associated with the reorganizations. According to thestandard
amortized analysis (see, for example, [11, Section 17.4]),the ad-
ditional cost incurred by reorganizations is onlyO(1) per modify-
ing operation. For our implementation, the worst-case space con-
sumption of a dynamic array storingn elements can be as high as
6n+O(1). The worst case occurs when the old array uses only 1/4
of its capacity, which means that4n slots are in use, and the new
array uses double the current size, which means2n slots.

3.2 Hashed array tree

The hashed array tree consists of two parts: a directory of size m
andΘ(m) segments of sizem. The directory stores pointers to the
beginning of respective segments. We denotem as thesegment size
and we ensure that it is a power of two at all times. We only al-
locate space for segments which store elements, and we maintain
the invariant that at mostO(1) segments are non-full. When the
maximum capacity for the current segment size is used, a reorga-
nization is performed. In such reorganization the new segment size
is determined and all elements are relocated to a new data structure
using this new segment size. Also, when the load factor gets below
1/8, a similar reorganization is carried out. A lookup of an element
with index i is done by accessing the slotd[⌊i/m⌋][i mod m] in
the directoryd. In the current implementation this computation is
done fast using a shift and a bitwise-and operation. In Figure 2, an
example of the data structure storing the integers〈0, 1, . . . , 15〉 is
shown.

The hashed array tree is our preferable data structure for the
compact variant ofcphstl::vector since the memory overhead
can be bounded byO(

√
n), n being the current size. To achieve this

space bound, the reorganization has to be done such that a memory
segment in the old data structure is immediately released after all
its elements have been moved into the new data structure. Since
in both data structures the sizes of the directories and the sizes of
the non-full segments are proportional to

√
n, the amount of extra

space used, even during reorganization, is onlyO(
√
n). Observe

that for the safe version this optimization is not possible since the
copy constructor for elements is provided by the user and it can
fail by throwing an exception. Therefore, an element copy isnot
necessarily reversible, and the old segments can first be released
after all copies have been taken. Otherwise, some data may belost.

3.3 Levelwise-allocated pile

A levelwise-allocated pile is similar to a hashed array tree. How-
ever, its directory is a smallvector (whose initial capacity is set
to 32) and memory segments are arrays of size2k wherek is a
parameter stored at the kernel. The data structure is expanded by
increasingk by one and allocating a new segment of size2k, and
contracted by decreasingk by one and deallocating the last empty

5

0 1 2 3

33

22

11

00

73

62

51

40

113

102

91

80

153

142

131

120

Figure 2. The organization of data in a hashed array tree.

segment provided that the second last non-empty segment haslost
more than, say, 8 elements. A lookup of an element with indexi is
performed by accessing the slotd[⌊lg(i+1)⌋][i− 2⌊lg(i+1)⌋ +1]
in the directoryd. An example of a levelwise-allocated pile storing
integers〈0, 1, . . . , 14〉 is shown in Figure 3.

This data structure is attractive since elements are never moved
because of an expansion or a contraction. Due to the dynamiza-
tion strategy the amount of space allocated is never more than
2n + O(lg n) if there aren elements in total. However, since the
memory segments are of varying size, some space may be lost due
to memory fragmentation. Also, the lookup formula can be prob-
lematic since it requires the calculation of the whole-number loga-
rithm. (This is a primitive operation in all Intel processors.) Com-
pared to a hashed array tree, the computation of the whole-number
logarithm is more expensive than performing a shift and a bitwise-
and operation.

0

1

2

3

0

0

2

1

1

0

6

3

5

2

4

1

3

0

14

7

13

6

12

5

11

4

10

3

9

2

8

1

7

0

Figure 3. The organization of data in a levelwise-allocated pile.

4. Proxies
Up to now we have assumed that the elements are stored directly at
the slots. There are two major problems with direct encapsulation.
First, modifying operations may invalidate iterators and references
to elements held within the data structure (referential integrity).
Second, it may not be possible to revert to the former state of
the data structure if the copy constructor of the element throws an
exception (strong exception safety). In this section we will present
the key ideas how to avoid both of these problems.

4.1 Referential integrity

The reason why lists and associative containers can guarantee ref-
erential integrity is that they store the elements in separate al-
located objects. The same indirect-encapsulation mechanism can
be used forvector; this way we can achieve referential integrity
and partially strong exception safety. We denote the allocated ob-
ject anelement encapsulatorsince its purpose is to encapsulate an
element in an appropriate way. After this modification, a kernel

maintains pointers to encapsulators and the iterators alsopoint to
encapsulators. To maximize genericity, our equivalent version to
std::vector stores an array of encapsulators. For this version, ev-
ery encapsulator is a class containing the element along with mem-
ber functions for accessing that element.

Keeping just one pointer, from a memory segment maintained
by the kernel to an encapsulator, is not enough for guaranteeing ref-
erential integrity. When an iterator is advancedk slots, the iterator
needs a pointer from the encapsulator to the corresponding slot in
the kernel, so it can get the pointer to the encapsulator which liesk
slots from the current slot. The backpointer from the encapsulator
to the kernel slot does not point to the memory segment explicitly
since a memory segment may be reallocated every time the size
of the kernel changes. Instead, each encapsulator stores anindex
of the corresponding slot. Additionally, each iterator hasto keep
a pointer to the encapsulator and to the kernel. Now the iterator
can execute an advance operation by retrieving the index from the
current encapsulator and then using theaccess member function
of the kernel to get the pointer to the desired encapsulator.During
insertions and erasures we need to update the indices in the encap-
sulators, but since the pointers from the kernel to the encapsulators
are either copied or moved, this additional work does not result in
any increase in the asymptotic time complexity. Indirect encapsu-
lation is illustrated in Figure 4.

Framework

Kernel
i

v iEncapsulator

Iterator

Figure 4. The encapsulator mechanism.

By letting the iterators contain pointers to kernels may still
cause inconsistency. Namely, when two containers are swapped,
iterators get invalidated. This problem can be solved by introducing
a kernel surrogatewhich is a small object containing just one
pointer to the kernel. The idea is that iterators should, instead of a
pointer to the kernel, hold a pointer to the surrogate. The surrogate
is allocated by an allocator and a backpointer to the surrogate is
maintained in the framework instance. Swapping two containers
is now done as follows: First the pointers stored in the surrogates
are swapped, and then the backpointers to the surrogates in the
framework instances are swapped. The surrogate mechanism is
illustrated in Figure 5.

4.2 Strong exception safety

General programming techniques for drafting exception-safe pro-
grams are discussed in [38], and specifics for creating a strongly
exception-safevector in [20]. We will not repeat the material that
can be found from the earlier sources, but concentrate on a single
issue that we have found problematic: How to makeoperator[]
strongly exception safe?

6

Framework

Kernel
i

Surrogate
pointer

v iEncapsulator

Iterator

Surrogate

Figure 5. The surrogate mechanism.

Listing 2. An error scenario foroperator[]
1 #include <stdexcept> / / defines std : : domainerror
2 #include <stl -vector .h++> / / defines cphstl : : vector
3

4 class my_class {
5 public :
6

7 my_class (int const& a) {
8 }
9

10 my_class const& operator=(my_class const&) {
11 throw std : :domain_error (” . . . ”) ;
12 }
13 };
14

15 int main () {
16 cphstl : :vector<my_class> v ;
17 v .insert (v .begin () , my_class (5)) ;
18 v[0] = my_class (6) ; / / my class : : operator= fa i l s
19 }

Let us look into the scenario shown in Listing 2. In this program,
vector v that consists of objects of typemy_class is created,
an element is inserted intov, and the created value is modified.
During the last operation an exception is thrown, and the container
is now in an inconsistent state. This means that ourvector does
not provide the strong form of exception safety. One may argue that
the exception was not thrown in the scope of the container, soit is
the user’s responsibility to handle possible exceptions. We disagree,
since the user cannot necessarily recover from this error.

To provide a safe mechanism for performing this operation, we
will ensure that this exception is handled within the scope of the
library. According to the C++ standard,operator[] should return
a reference to the type of the value, which we cannot control.In-
stead, we will return areference proxy, which we can control. The
behaviour is almost the same as if a reference was returned. The
reference proxy hasoperator= as its member function which will
perform the assignment within atry -catchblock. We need to make
some changes to the underlying data structure for it to work,since
if an exception occurs, we cannot necessarily undo this action be-
cause an exception can be thrown in the copy constructor, too. Mov-
ing the element outside the encapsulator, and allocating the space
for it with an allocator, solves our problem. Nowoperator= allo-
cates a new element and explicitly invokes the assignment operator;
if the operation fails, we deallocate the element whose allocation

failed and the container will still be in the same state as before
the exception was thrown. If an exception is not thrown, the new
element is attached to the encapsulator and the old element is deal-
located. Referential integrity is still maintained since the iterators
point to encapsulators. In this situation, we say that the elements are
encapsulateddoubly indirectly. An overview of the different ways
to encapsulate elements is given in Figure 6.

Elements stored
directly

Elements stored
indirectly

Elements stored
doubly indirectly

v

v i

.

i

v

Figure 6. The three different encapsulation strategies.

To maximize genericity the creation of encapsulator objects
takes place in another class, in a so-calledfactory. This class is
needed since an object of an encapsulator class is not necessarily
created in the same way. For example, for the encapsulators which
encapsulate elements indirectly, the object needs to be allocated
and afterwards constructed; for the encapsulator which encapsu-
lates elements directly, the encapsulator is just constructed. To pro-
vide the two alternative behaviours, we used partial specialization
when implementing the factory class.

4.3 Iterators

As to iterators, we have predefined two different class templates:
one supporting direct encapsulation (rank iterator) and another
supporting indirect encapsulation (proxy iterator). The rank iterator
keeps an index, which corresponds to the current slot, and a pointer
to the surrogate object. The proxy iterator keeps a pointer to the
encapsulator object, which corresponds to the current slot, and a
pointer to the surrogate object.

To make the framework work for both kinds of iterators, the
member functions cannot accept iterators as input arguments or as
return values. Inside the framework, indices are used instead. For
the communication between the framework and container, theit-
erator class provides a conversion mechanism to convert an itera-
tor to an index, and vice versa. This conversion between iterators
and indices is completely transparent; it is done by a parameter-
ized constructor and a conversion operator. Both of these member
functions are protected so that they can only be used by the friends;
in particular, thevector container must be a friend of the iterator
classes. If this was not the case, the iterator encapsulation would
break down. A sequence diagram illustrating the conversionmech-
anism is shown in Figure 7.

Client Container

index

insert(index, v)insert(iterator, v)

Realizator

iterator

Figure 7. A sequence diagram showing what happens in an
insert operation.

7

5. Benchmarks
There are two questions related to our framework which couldbe
interesting to answer:

1. Does the use of the framework result in any performance loss?

2. What is the extra cost associated with safety?

To answer these questions we performed some experiments using
the framework. In this section we describe the experiments ran and
report the results obtained.

The overall picture of the experimental results was very con-
sistent across the computers where we ran the benchmarks. The
results reported here were carried out on a PC with the following
configuration:

CPU: Intel Core 2 Duo at 2.4 GHz

Memory size: 2 GB

Cache size:2 MB

Operating system: Ubuntu 8.04.2, kernel 2.6.24

Compiler: gcc 4.2.4 with optimization flag-O3.

The experiments were run on a dedicated machine by closing down
all unnecessary system processes. Each individual experiment was
repeated 10 times to be sure that the clock precision would not
cause big inaccuracies in the results.

In our experiments, the elements stored were integers. We con-
sidered the three kernels combined with different encapsulation
policies (but we only report the results for the dynamic array with
doubly-indirect encapsulation). For the sake of comparison, we also
report the results obtained forstd::vector. Letv andw be two in-
tegervectors. We performed five experiments for different values
of n:

push back: Fori ∈ [0, n): v.push back(i).

pop back: Fori ∈ [0, n): v.pop back().

operator[]; sequential access:Fori ∈ [0, n): v[i] = 0.

operator[]; random access:Fori ∈ [0, n): v[w[i]] = 0. Be-
fore this, the elements inw were randomly shuffled.

insert: Fork ∈ [0, 100): v.insert(v.begin() + n/2, k).

In our graphs we report the execution times per operation. The time
needed for all initializations is excluded in the numbers reported.

The results obtained are shown in Figures 8, 9, 10, 11, and 12.
In general,std::vector is much faster than the CPH STL im-
plementations. However, the dynamic array with direct encapsula-
tion, which is a similar tostd::vector, is not much slower. In an
earlier study [36] we have shown that it is possible to implement
a component framework with an acceptable loss in performance.
This also seems to be true for ourvector framework. Even if our
safe variants maintain the desired asymptotic complexity,the con-
stant factors introduced are high. Each level of indirection increases
the execution time by a significant additive term. Cache misses and
memory allocations are expensive in contemporary computers!

A thorough inspection of the figures gives rise to two additional
remarks. All our kernels ensure that the amount of space usedis
linear in the number of elements stored (provided that thereserve
member function is not called). From Figure 9 we can see that this
makespop_back much slower than that available in the standard
implementation. However, the cost ofpop_back is comparable to
that of push_back which should be acceptable for most applica-
tions. From Figure 12 we can see thatinsert is extremely slow
for a levelwise-allocated pile. The execution time of the direct ver-
sion is about the same as that of the indirect version. This means
that the operation is CPU bound, indicating that the computation

of the whole-number logarithm is expensive. The problem is that
the framework calls theaccess member of the kernel when copy-
ing the elements, and this is done for each element. If copying was
implemented in the kernel, most of these computations couldbe
avoided. This example shows that a framework-based approach can
incur extra overhead.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

217 218 219 220 221 222 223

E
xe

cu
tio

n
tim

e
pe

r
op

er
at

io
n

[in
 n

an
os

ec
on

ds
]

Number of operations

push_back for integer data

dynamic array, doubly indirect encapsulation
levelwise−allocated pile, indirect encapsulation
hashed array tree, indirect encapsulation
dynamic array, indirect encapsulation
levelwise−allocated pile, direct encapsulation
dynamic array, direct encapsulation
hashed array tree, direct encapsulation
std::vector

Figure 8. Experiment withpush back.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

217 218 219 220 221 222 223

E
xe

cu
tio

n
tim

e
pe

r
op

er
at

io
n

[in
 n

an
os

ec
on

ds
]

Number of operations

pop_back for integer data

dynamic array, doubly indirect encapsulation
levelwise−allocated pile, indirect encapsulation
hashed array tree, indirect encapsulation
dynamic array, indirect encapsulation
levelwise−allocated pile, direct encapsulation
hashed array tree, direct encapsulation
dynamic array, direct encapsulation
std::vector

Figure 9. Experiment withpop back.

6. Reusability
It is well-known that LOC is a questionable software metric.In
spite of this we carried out a brief analysis on our code base.So
far, we have implemented three differentvector kernels and each
implementation comes with three variants: fast, safe that provides
iterator validity, and extra safe that also provides the strong form
of exception safety. We wanted to avoid the situation where these
nine variants would require nine times as much code as a single
complete implementation. We have succeeded in this.

There are different ways of organizing template source code.
We try to provide a declaration of a component in a separate
header file (.h++ files) and a definition of the member functions
in another implementation file (.i++ files) if we expect that the
component will be used by external users. In components thatare
small or are only meant for internal use, the member functions
are implemented inline, and no separate implementation fileis

8

 1

 10

 100

 1000

220 221 222 223 224

E
xe

cu
tio

n
tim

e
pe

r
op

er
at

io
n

[in
 n

an
os

ec
on

ds
]

Number of operations

operator[] for integer data (sequential access)

dynamic array, doubly indirect encapsulation
levelwise−allocated pile, indirect encapsulation
levelwise−allocated pile, direct encapsulation
hashed array tree, indirect encapsulation
dynamic array, indirect encapsulation
hashed array tree, direct encapsulation
dynamic array, direct encapsulation
std::vector

Figure 10. Experiment withoperator[]. Each element is visited
once in sequential order.

 1

 10

 100

 1000

 10000

217 218 219 220 221 222 223

E
xe

cu
tio

n
tim

e
pe

r
op

er
at

io
n

[in
 n

an
os

ec
on

ds
]

Number of operations

operator[] for integer data (random access)

dynamic array, doubly indirect encapsulation
levelwise−allocated pile, indirect encapsulation
dynamic array, indirect encapsulation
hashed array tree, indirect encapsulation
levelwise−allocated pile, direct encapsulation
hashed array tree, direct encapsulation
std::vector
dynamic array, direct encapsulation

Figure 11. Experiment withoperator[]. Each element is visited
once, and these visits are done in random order.

provided. When interpreting the results of LOC calculations, the
code duplication due to separate declarations can be problematic.
Since the declarations could be generated automatically, we ignore
the overhead caused by them.

All source code related to the existing implementations is pub-
lished in an electronic appendix associated with this paper[23].
Table 2 summarizes the (logical) LOC used by each file.

By looking at these numbers and the actual code, we can still
identify some code duplication; the three encapsulator classes and
the three partial specializations of the factory class for each type of
encapsulator are very similar. Probably some additional language
support would be needed to be able to handle encapsulators ina
cleaner way. (For Smalltalk, an extension of the run-time system
has been proposed for this purpose [28].) One can see that theker-
nels are relatively small. Each kernel has to provide nine member
functions and normally we use about 100 LOC, or less, for the im-
plementation. It is the kernel that crystallizes the essence of a data
structure. We expect to see these kernels in textbooks on algorithms
and data structures.

As we wrote in the introduction, a complete implementa-
tion of vector described in [29] took 365 LOC. In their imple-

105

106

107

108

109

217 218 219 220 221 222 223

E
xe

cu
tio

n
tim

e
pe

r
op

er
at

io
n

[in
 n

an
os

ec
on

ds
]

Number of elements

insert for integer data (100 insertions in the middle of a sequence)

levelwise−allocated pile, indirect encapsulation
levelwise−allocated pile, direct encapsulation
dynamic array, doubly indirect encapsulation
hashed array tree, indirect encapsulation
dynamic array, indirect encapsulation
hashed array tree, direct encapsulation
dynamic array, direct encapsulation
std::vector

Figure 12. Experiment withinsert. Repeatedly insert new ele-
ments in the middle of the sequence.

Table 2. LOC counts for our files.
File LOC

stl-vector.h++ 102
stl-vector.i++ 249

vector-framework.h++ 62
vector-framework.i++ 137

surrogate.h++ 12
direct-encapsulator.h++ 20
indirect-encapsulator.h++ 39

doubly-indirect-encapsulator.h++ 72
reference-proxy.h++ 95
rank-iterator.h++ 73
rank-iterator.i++ 121
proxy-iterator.h++ 65
proxy-iterator.i++ 140

factory.h++ 33
dynamic-array.h++ 67

hashed-array-tree.h++ 101
levelwise-allocated-pile.h++ 59

slot-swap.i++ 22
uninitialized-copy.i++ 25

mentation, iterators were realized as pointers to elementsso no
separate classes were needed for them. Also, no separate dec-
larations for any of the classes were provided. In our case, a
dynamic-array kernel with direct encapsulation would correspond
to their implementation. Hence, if we ignore the declarations,
we use 249 (stl-vector.i++) + 137 (vector-framework.i++)
+ 12 (surrogate.h++) + 20 (direct-encapsulator.h++)
+ 95 (reference-proxy.h++) + 121 (rank-iterator.h++)
+ 33 (factory.h++) + 67 (dynamic-array.h++) + 22
(slot-swap.i++) = 25 (uninitialized-copy.i++) = 781 LOC
to obtain about the same functionality. Because of generality, we
have more than doubled the amount of code needed. We will leave
it for the reader to decide whether it is worth paying this price in the
increase on the complexity and the amount of code. The increased
complexity is in particular apparent in code that is common for both
the safe and unsafe components. The common pieces must be care-
fully crafted to be sure that the safety of the safe implementations
is not lost.

9

7. Adaptivity
In this section we describe in which ways our current implementa-
tion of the component framework forvector could be made adap-
tive. For benchmarking purposes, in the actual realizations we still
have full control over the instantiation of template parameters. We
also give a list of the language facilities in C++ that could be im-
proved to make the development of active libraries easier.

7.1 Overriding default implementations

A naive implementation ofinsert moves the elements between
the given position and the end of thevector forward and copies
the given element(s) into the hole created. According to thecontract
made between the framework and each kernel, the framework is
responsible forinsert. However, sometimes the framework does
not have enough information to do the movement of elements
efficiently. For example, our benchmarks showed thatinsert was
unnecessarily slow for levelwise-allocated piles. To recover from
this inefficiency, we can let the kernel implementinsert as well.
After this the framework can invoke the function provided bythe
kernel. This leads to a general optimization strategy that resembles
member-function overriding achieved via inheritance.

OPTIMIZATION 1. If a policy provides an implementation of a
member function, for which a framework provides a default im-
plementation, override the default implementation by invoking the
function in the policy.

Our prototype implementation of this optimization relies on the
substitution-failure-is-not-an-error principle [40, Section 8.3]. We
wrote a macroHAS_SINGLE_ELEMENT_INSERT that tests whether
the kernel has aninsertmember function that takes an index and a
reference to an immutable element as parameters and returnsnoth-
ing. This macro is then used as a compile-time function that re-
turns a Boolean value. In the framework the actual implementation
of insert invokes a private member function that comes in two
versions, one that invokes the member function in the kerneland
another that provides the default implementation. The selection of
the correct version of that private member function is done by con-
verting the Boolean value returned by the macro to a type and by
relying on function overloading. The programming technique used
here is called tag dispatching, and it has been used in many places
in earlier implementations of the STL.

A more elegant implementation could be obtained by relying on
concept-based overloading. First, a conceptHasSingleElement-
Insert is defined to specify that the given type must have a
member function with the signaturevoid insert(size type,
value type const&). Second, this concept is used to define two
overloaded versions ofinsert in the framework. The first version
requires that the kernel, which is one of the template parameters,
fulfils the requirement specified by the concept and the second
version requires that the kernel does not fulfil this requirement. As
above, the first version employs the member function in the kernel
and the second version provides the default implementation. Since
we did not have a compiler available that could handle concepts,
we were not able to try this approach in practice.

We hope that the reader can recognize the significance of this
idea: it leads to extremely flexible interfaces and makes thedevel-
opment of efficient component frameworks easier. Possibly even
direct language support should be provided for this facility.

7.2 Selecting the fastest copy algorithm

In our vector framework, copying of elements from one memory
segment to another is an often-recurring operation. To speed up
copying, a standard optimization described, for example, in [25] is
to utilize an efficient bitwise copying method if such copying will

have a correct outcome. This is true, for example, for all plain-old-
data (POD) types.

OPTIMIZATION 2. If both in the source and the target the elements
are stored in a contiguous memory segment, if the elements are
POD types, and if the sizes of the elements in both arrays are the
same, copy the elements using the fastmemcpy function, which is
available at the standard C library.

One way of implementing this optimization is to use the
type traits available at the standard library together withtag dis-
patching. However, according to the technical report on C++ li-
brary extensions [18], it is unspecified under what circumstances
std::tr1::is pod<V>::value is true. Hence, it is unspecified
when the optimization is in use, if it is in use at all. Clearly, un-
der these premises it is difficult to build a portable active library. In
general, the facilities for compile-time reflection, i.e. the ability of
a program to inspect its own high-level properties at compile time,
could be improved in C++.

7.3 Selecting the best-suited encapsulation policy

We observed that forvector implementations based on direct en-
capsulation are slow when elements being manipulated are expen-
sive to copy. This inefficiency is due to relocations of elements, in-
volving element constructions and destructions. A faster behaviour
can be obtained by letting the array store pointers to elements.

OPTIMIZATION 3. If indirect encapsulation is more profitable than
direct encapsulation, store elements indirectly; otherwise store
them directly.

To implement this kind of optimization, we would need a
compile-time operatorcostof that evaluates the cost of a given
expression at compile time. The idea that a compiler does profiling
during compilation is interesting. Since there is no operator costof
available, we are only able to approximate this optimization. For
example,sizeof can provide a good estimation whether a copy of
an element will be more expensive than a copy of a pointer, butthis
is not necessarily the case. For example, think of a socket that is a
small object but it can be costly to copy. Also, the expression for
costof should be chosen carefully to take into account the cost of
indirection and the cost of cache misses. We admit that profiling
can slow down compilation too much so it might be wiser to rely
on an external configuration tool.

As to the selection of a suitable encapsulation policy, a similar
situation appears when instantiating a kernel that guarantees strong
exception safety and referential integrity. Depending on whether
the copy constructor for the elements can throw an exceptionor not,
the simplest possible encapsulation policy can be selectedwithout
loosing the strong form of exception safety.

OPTIMIZATION 4. If the copy constructor for the elements cannot
throw an exception, store elements indirectly; otherwise store them
doubly indirectly.

To implement this optimization, thehas_nothrow_copy
type trait from the standard library could be used. How-
ever, again the technical report on C++ library extensions
[18] does not specify under what circumstances, if any,
std::tr1::has nothrow copy<V>::value evaluates to true.

8. Adaptability
.

For years, the CPH STL has been an interesting teaching tool
when educating software developers at our university. We have

10

been convinced that the library might also be used at other univer-
sities for teaching purposes. However, up to now this has nothap-
pened. After introducing component frameworks into the library
we expect that the deployment at other sites will actually happen.

The development of component frameworks is demanding. First
an attempt of trying to extend an existing component framework
with new features reveals the weaknesses of earlier design deci-
sions. To understand a complete component framework and to ex-
tend it requires good developer skills. We claim that the CPHSTL
is a good platform for training these skills.

The development of component frameworks, and generic pro-
gramming in general, requires extreme discipline. Even if the user
or the developer of a component framework makes a trivial mis-
take, the error message produced by the compiler can be extensive.
This is simply because the types involved are so complicated; the
description of a type based on a component framework with allthe
instantiated policies can easily fill a small computer screen. The
developer community has hoped that C++ concepts (see, for exam-
ple, [15, 19]) could solve the problem with poor error messages,
but we doubt that. We question whether it is a good idea to en-
code complicated adaptations into types. Even though adaptability
of component frameworks is a nice feature, with current tools the
development of frameworks is tedious.

The components of the CPH STL are extensible. We have al-
ready now a collection of programming exercises for our students.
You could test your developer skills by solving any of the following
exercises.

EXERCISE1. Implement a newvector kernel for the CPH STL.
Highly relevant candidates to consider include tiered vectors de-
scribed in [16] and blockwise-allocated piles described in[21].

EXERCISE2. In our current implementation of a levelwise-
allocated pile the directory is a fixed-sized array. To make the data
structure fully dynamic and to provide the best possible worst-case
performance bounds, we would need avector implementation that
realizespush_back and pop_back at O(1) worst-case cost. De-
velop avector kernel that gives these performance guarantees.

EXERCISE3. Extend the framework such that the user can specify
both the encapsulation policy (direct, indirect, and doubly indirect
encapsulation) and the ownership policy (client owns, container
owns, and realizator owns) for the elements stored in avector.

EXERCISE4. Components obtained by instantiating component
frameworks are often built on several layers of abstraction. This
would make the work of compilers harder, and sometimes perfor-
mance penalties are introduced. Investigate the assemblercode
produced by your compiler to see what are the causes for the per-
formance penalties in ourvector implementations. Can you tell
your compiler vendor how these could be avoided? Can you tellus
how we could have avoided them?

The CPH STL is like any other software; it will never become
complete. By releasing these extensible component frameworks,
we do not even aim at producing a complete—ultimate—releaseof
the library. The whole point is to use the library in education, and
let coming software developers extend the library. It is a fascinating
idea that the users will continue the design and developmentof the
library by extending frameworks and writing new components.

9. Conclusions
We conclude the paper with brief messages to different stakehold-
ers in the software-library community.

Users of generic software libraries:The CPH STL provides fast,
safe, and compact variants for many of the existing standard-
library containers. Similar facilities could be provided,and are

already provided, by other container libraries. Hopefully, we
have made it clear that safety comes with a price tag. How-
ever, in applications, where safety has a higher priority than
performance, it is natural to use the safe variants. This wayone
can avoid many hard-to-find bugs. The safe components may be
particularly useful for educational purposes.

Designers of programming-language facilities:An important
proclamation made in this paper was that in C++ the facilities
provided for compile-time reflection and metaprogramming
are far too primitive to be of practical value. Also, a stronger
support for writing generic encapsulators would be desirable.
We hope that better programming-language support for generic
programming will be available in the near future.

Developers of generic software libraries:When developing the
vector framework, we encountered a problem which we had
not thought of before and for which we could not provide any
general solution: How to avoid or detect gracefully a mismatch
between the template parameters given? It would be easy to
check that a given classK conceptually fulfils all kernel require-
ments and another given classE all encapsulator requirements,
but what ifE was not designed to work withK at all. The poor
user will waste his or her valuable development time to find out
this sad fact. We leave the problem of designing mismatch-free
component libraries as a challenge for other library developers.

Teachers of software developers:We have used the CPH STL in
the exercises (weekly assignments and mini-projects) of our
courses (generic programming and software construction) to
teach both design and programming. The student feedback from
these courses has been overly positive. Students have foundthe
assignments interesting and challenging. But, yes, we havealso
received complaints about a heavy workload. Our recommen-
dation is that projects are not made longer than three weeks
before the students have enough practical experience in generic
programming. Due to the lack of adequate (open-source) tools,
weak students would waste their time if the project periods were
longer. But still, as put by one of our students, it is better to
over-challenge than to simplify the assignments.

Software availability
The programs discussed in this study are available via the home
page of the CPH STL project [13] in the form of a PDF document
[23] and atar file.

Acknowledgments
We thank the following people who have been directly involved in
the development ofvector in the CPH STL project; much of our
work is built on their work: Tina A. G. Andersen, Filip Bruman,
Marc Framvig-Antonsen, Ulrik Schou Jørgensen, Mads D. Kris-
tensen, Wojciech Sikora-Kobylinski, Daniel P. Larsen, Bjarke Buur
Mortensen, Jan Presz, Jens Peter Svensson, Mikkel Thomsen,Ole
Hyldahl Tolshave, Claus Ullerlund, Bue Vedel-Larsen, and Chris-
tian Wolfgang. Also, we thank the anonymous referees for their
insightful comments that sharpened our understanding of subject
matter.

References
[1] David Abrahams. Exception-safety in generic components: Lessons

learned from specifying exception-safety for the C++ standard library.
In Selected Papers from the International Seminar on Generic
Programming, Lecture Notes in Computer Science1766. Springer-
Verlag, 2000, 69–79.

[2] Andrei Alexandrescu.Modern C++ Design: Generic Programming
and Design Patterns Applied. Addison-Wesley, 2001.

11

[3] Algorithmic Solutions. The LEDA User Manual, Version 6.2. Web
document available athttp://www.algorithmic-solutions.
info/leda_manual, 2008.

[4] Matt Austern. Defining iterators and const iterators.C/C++ User’s
Journal19(1), 2001, 74–79.

[5] Matthew H. Austern, Bjarne Stroustrup, Mikkel Thorup, and John
Wilkinson. Untangling the balancing and searching of balanced
binary search trees.Software—Practice and Experience33(13),
2003, 1273-1298.

[6] Phil Bagwell. Fast functional lists, hash-lists, deques and variable
length arrays. LAMP Report 2002-003. School of Computer and
Communication Sciences, Swiss Federal Institute of Technology
Lausanne, 2002.

[7] Kent Beck and Ward Cunningham. A laboratory for teachingobject-
oriented thinking.SIGPLAN Notices24(10), 1989, 1–6.

[8] John Boyer. Algorithm alley: Resizable data structures. Dr. Dobb’s
Journal23(1), 1998, 115–116, 118, 129.

[9] British Standards Institute.The C++ Standard: Incorporating
Technical Corrigendum 1, 2nd Edition. John Wiley and Sons, Ltd.,
2003.

[10] Andrej Brodnik, Svante Carlsson, Erik D. Demaine, J. Ian Munro,
and Robert Sedgewick. Resizable arrays in optimal time and space.
In Proceedings of the 6th International Workshop on Algorithms and
Data Structures, Lecture Notes in Computer Science1663. Springer-
Verlag, 1999, 37–48

[11] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms, 2nd Edition. The MIT
Press, 2001.

[12] Krzysztof Czarnecki, Ulrich Eisenecker, Robert Glück, David
Vandevoorde, and Todd Veldhuizen. Generative programmingand
active libraries. InSelected Papers from the International Seminar
on Generic Programming, Lecture Notes in Computer Science1766.
Springer-Verlag, 2000, 25–39.

[13] Department of Computer Science, University of Copenhagen. The
CPH STL. Website accessible athttp://cphstl.dk, 2000-2009.

[14] Erich Gamma, Richard Helm, Ralph Johnson, John and Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[15] Douglas Gregor, Jaakko Järvi, Jeremy Siek, Bjarne Stroustrup,
Gabriel Dos Reis, and Andrew Lumsdaine. Concepts: Linguistic
support for generic programming in C++. SIGPLAN Notices41(10),
2006, 291–310.

[16] Michael T. Goodrich and John G. Kloss II. Tiered vectors: Efficient
dynamic arrays for rank-based sequences. InProceedings of the 6th
International Workshop on Algorithms and Data Structures, Lecture
Notes in Computer Science1663. Springer-Verlag, 1999, 205–216.

[17] Austin Henderson and Morten Kyng. There’s no place likehome:
Continuing design in use. InDesign at Work: Cooperative Design of
Computer Systems.Lawrence Erlbaum Associates, 1991, 219–240.

[18] ISO/IEC. Draft Technical Report on C++ Library Extensions.
Document Number N1836. The C++ Standards Committee, 2005.

[19] ISO/IEC. Working Draft: Standard for Programming Language C++.
Document Number N2857. The C++ Standards Committee, 2009.

[20] Jyrki Katajainen. Making operations on standard-library containers
strongly exception safe. InProceedings of the 3rd DIKU-IST Joint
Workshop on Foundations of Software. Report 07/07. Department of
Computer Science, University of Copenhagen, 2007, 158–169.

[21] Jyrki Katajainen and Bjarke Buur Mortensen. Experiences with the
design and implementation of space-efficient deques. InProceedings
of the 5th Workshop on Algorithm Engineering, Lecture Notes in
Computer Science2141. Springer-Verlag, 2001, 39–50.

[22] Jyrki Katajainen and Bo Simonsen. The design and description of a
generic software library. Work in progress, 2009.

[23] Jyrki Katajainen and Bo Simonsen. Vector framework: Electronic
appendix. CPH STL Report 2009-4. Department of Computer
Science, University of Copenhagen, 2009.

[24] Mads D. Kristensen. Vector implementation for the CPH STL. CPH
STL Report 2004-2. Department of Computer Science, University of
Copenhagen, 2004.

[25] John Maddock and Steve Cleary. C++ type traits.Dr. Dobb’s Journal
25(10), 2000, 38–44.

[26] K. Mehlhorn and S. Näher.LEDA: A Platform for Combinatorial and
Geometric Computing. Cambridge University Press, 1999.

[27] Anders Mørch. Three levels of end-user tailoring: Customization,
integration, and extension. InComputers and Design in Context. The
MIT Press, 1997, 51–76.

[28] Geoffrey A. Pascoe. Encapsulators: A new software paradigm in
Smalltalk-80.SIGPLAN Notices21(11), 1986, 341–346.

[29] P. J. Plauger, Alexander A. Stepanov, Meng Lee, and David R. Musser.
The C++ Standard Template Library. Prentice Hall PTR, 2001.

[30] R. Oppermann and H. Simm. Adaptability: User-initiated individual-
ization. InAdaptive User Support—Ergonomic Design of Manually
and Automatically Adaptable Software. Lawrence Erlbaum Asso-
ciates, 1994, 14–66.

[31] Frédéric Pluquet, Stefan Langerman, Antoine Marot,and Roel
Wuyts. Implementing partial persistence in object-oriented languages.
In Proceedings of the Workshop on Algorithm Engineering and
Experiments. ACM-SIAM, 2008, 37–48.

[32] Rajeev Raman and S. Srinivasa Rao. Succinct dynamic dictionaries
and trees. InProceedings of the 30th International Colloquium on
Automata, Languages and Programming, Lecture Notes in Computer
Science2719. Springer-Verlag, 2003, 357–368.

[33] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct
dynamic data structures. InProceedings of the 7th International
Workshop on Algorithms and Data Structures, Lecture Notes in
Computer Science2125. Springer-Verlag, 2001, 426–437.

[34] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine.The Boost
Graph Library: User Guide and Reference Manual. Addison-Wesley
Professional, 2002.

[35] Silicon Graphics, Inc. Standard template library programmer’s guide.
Website accessible athttp://www.sgi.com/tech/stl, 1993–
2009.

[36] Bo Simonsen. A framework for implementing associativecontainers.
CPH STL Report 2009-3. Department of Computer Science,
University of Copenhagen, 2009.

[37] Edward Sitarski. Algorithm alley: HATs: Hashed array trees: Fast
variable-length arraysDr. Dobb’s Journal21(11), 1996.

[38] Bjarne Stroustrup. Appendix E: Standard-library exception safety.
The C++ Programming Language, Special Edition. Addison-Wesley,
2000.

[39] Bjarne Stroustrup.Programming: Principles and Practice Using
C++. Pearson Education, Inc., 2009.

[40] David Vandevoorde and Nicolai M. Josuttis.C++ Templates: The
Complete Guide. Pearson Education, Inc., 2003.

12

