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Abstract

1. Introduction

The CPH STL is a special edition of the STL, the containers and The design and implementation of the standard-libraytor has

algorithms part of the &+ standard library. The specification of
the generic components of the STL is given in therGtandard.
Any implementation of the STL, e.g. the one that ships withryo
standard-compliant & compiler, should provide at least one real-
ization for each container that has the specified charatitesiwith
respect to performance and safety. In the CPH STL project, ou
goal is to provide several alternative realizations fohe&TL con-
tainer. For example, for associative containers we canigeoal-
most any kind of balanced search tree. Also, we do provideaad
compact versions of each container. To ease the mainteoétiis
large collection of implementations, we have developedmmment
frameworks for the STL containers. In this paper, we desctiife
design and implementation of a component frameworkéattor,
which is undoubtedly the most used container of the €tandard
library. In particular, we specify the details ofractor implemen-
tation that is safe with respect to referential integritg atrong ex-
ception safety. Additionally, we report the experienced @ssons
learnt from the development of component frameworks whieh w

a great pedagogical value when illustrating the use of uarjmo-
gramming language facilities and programming technigtesex-
ample, in his recent textbook [39], Stroustrup devotesetiufethe
27 chapters (115 pages or about 9% of the whole bookytz@or
implementation that is roughly equivalent to the standdmary
vector. However, textbooks have seldom enough space to describe
a completerector implementation. The book on the standard tem-
plate library (STL) by Plauger et al. [29] is an interestixgeption;
their completerector implementation consists of 365 logical lines
of code (LOC), excluding the partial specialization for Bxam el-
ements, which is even longer than the primary class temglate
serve that in our use of the LOC metric we ignore comment lines
and lines with a single parenthesis, and we calculate loaig-st
ments as single lines.) For other complete implementatioage-
fer to the source code shipped with your+Ccompiler and the
documentation of the Silicon Graphics Inc. implementatibthe
STL [35].

This work is part of the Copenhagen STL (CPH STL) project

hope to be of benefit to persons engaged in the design and-imple initiated in 2000 [13]. The goal in this project is to

mentation of generic software libraries.
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e provide an enhanced edition of the STL, i.e. the containeds a
algorithms part of the &+ standard library [9, 19];

e study and analyse existing specifications for and impleeent
tions of the STL to determine the best approaches to optimiza
tion;

e place the programs developed in the public domain and make
them freely available on the Internet;

e provide benchmark results to give library users better iguisu
for assessing the quality of different STL components; and

e carry out experimental algorithmic research.

The architecture of the CPH STL is described in [22]. Two impo
tant tools used when describing the foundations of the iybaae
C++ concepts [15] and design patterns [14]. In this paper we use
these tools in an informal way; for a pathway to a more formal
treatment, we refer to the above-mentioned papers and tae re
ences mentioned therein.

The STL is organized around three fundamental concepts: con
tainers, iterators, and algorithms. Containers are clasgplates
that provide iterators, and algorithms are function tengslahat
work for various kinds of iterators. It is this decoupling afjo-
rithms and containers, and type parameterization in géntbiat
makes the components of the STL so flexible. In the modern lit-
erature on @+ design (see, for example, the book by Alexan-
drescu [2]), it is advocated that even a greater degree dbilex
ity is achieved by parameterizing generic components wili
cieswhich are classes or class templates describing configurabl



behaviour. The paradigm is referred to as policy-basedydesic-
cording to our terminology, @@mponent framewoiik a skeleton of
a software component which is to be filled in with implemeiotat
specific details in the form of policies.

In this paper, we describe the design and implementation of a

component framework for theector container, we report the ex-
periences and lessons learnt from its development, and aleade
the efficiency of the existing realizations. In total, 15velepers
have been involved in the developmentettor in the CPH STL.

Some of the progress reports have been published on thecproje

website [21, 24].

1.1 Standard-compliantvector and relevant extensions

A vector stores a sequence of elements such that elements can be

accessed by their indices and also by their iterators ataonsost.
Compared to aarray, whose size is fixed (at compile time or at
run-time), the size of &ector can vary and memory management
is handled automatically. In the computing literature stdata
structure has been discussed under many names, includiagnity
array [16, 33], dynamic table [11], extendible array [3Xkemsible
array [8], flexible array (term used in Algol 68), growablear
[31], resizable array [10], and variable-length array [B]. As to
the vector class in G+, its full specification together with all
associated operations can be found in the- Gtandard [9, 19].

Contiguous storage: The G++ standard requires that the elements

of avector are stored contiguously in memory. However, in
the literature many interesting implementations have lpgen
posed which do not keep the elements in a contiguous mem-
ory segment (see, for example, [10, 16, 21, 37]). Naturtilg,
requirement is important in some low-level applicationly-re

ing on address-of operations, but there should also be $pace
vector implementations that do not fulfil this requirement.

Space utilization: In the G-+ standard, no space bounds are speci-

fied for the container classes. Because of performancedmmsi
ations, standardector implementations do not release the al-
located memory even if the number of elements gets smakter. A
pointed out in [8], in some applications, like long-runnipig-
grams in servers, such a behaviour can be unacceptable. Many
such programs running simultaneously can fill the whole mem-
ory although only a small portion of the memory is in actual
use. A natural requirement is that no container should uge mo
than linear extra space, linear in the number of elementsdto
However, in some applications even this amount can be un-
acceptable, since elements may be large and the space usage
is measured in elements (not in bytes or words). More space-
economicalvector implementations are known: f denotes

the number of elements stored, the bodnd,/n) on the amount

of extra space, i.e. the amount of space used in additioreto th

Thevector class has two template parameters that allow the user
to specify the type of the elements stored and the type of the
allocator used for allocating and deallocating memory. \&eeh

elements themselves, is known to be achievable [10, 21, 37].
Amortized time bounds: Many member functions ofector are

extended the interface with additional template pararagtehich
allow the user to specify the type of the data structure used f
storing the elements, the type of mutable iterators and itabie
iterators (colloquiallyconst iterators) used when traversing over
the sequence. Because of the default values provided, éxése
template parameters do not affect the normal use of the io@nta
There are several aspects in the specificatioreator [9, 19]

that may not be satisfactory for all users.

Referential integrity: In some applications@ector may be used
to maintain references to other objects, and these objeays m

again keep references back to the array. Many programmers

required to haveé) (1) cost in the amortized sense. In this point
the Gr+ standard is unclear since the sequence of operations
over which the amortization is performed is never specified.
Due to reallocations, the worst-case cost of a single ojperat
like push_back can be linear, as is the case for the most com-
mon implementations. This can have fatal consequences for
other data structures that useector. For example, a binary
heap is expected to support its operations at the logargthmi
worst-case cost, but if @ector is used in its implementa-
tion, this worst-case behaviour does not hold any more {8]. |
is known that allvector operations can be supported@({1)
worst-case cost, except that insertions and erasure<haye)

worst-case cost if onlg)(,/n) extra space is available [21] and,
for an arbitrary small but fixed > 0, O(n®) worst-case cost

if O(n'~¢) extra space is available [33]. Clearly, it is relevant
to providevector implementations that guarantee good worst-
case performance for all operations.

have been bitten by the bug that, because of the reallocation
the underlying array, the references back are no more Viiid.

is an error that is difficult to find. Simply, the rules spedfia

the G++ standard, when and under what circumstances iterators
and references to elements are kept valid, are difficult to re
member. Hence, the memory burden on working programmers
could be reduced if references and iterators were kept glid

all operations, except when an element is erased.

Strong exception safety:A container operation istrongly excep-
tion safe[1] if it completes successfully, or throws an exception
and makes no changes to the manipulated container and leak
no resources. The rules specified in the+rGtandard, which
operations guarantee strongly exception safety and undat w
circumstances, are difficult to remember. Hence, there eed n
for avector for which all operations guarantee the strong form
of exception safety.

In a normal implementation of the STL, one realization is
provided for each container. In the CPH STL, we want to pro-
vide at least three predefined realizations for each castaone
that is fast, one that is safe, and one that is space effichent.
%o vector, the user can select betweephstl: : fast_vector,
cphstl::safe_vector, andcphstl: :compact_vector. More-
over,cphstl: :vector is guaranteed to be standard compliant.

The fast version is implemented by expanding the array by a
constant fraction and never contracting the array. Thesafgon
is based on the same expansion strategy, but it also ap@isslar
contraction strategy (compare [8]). The safe implemeomagiro-
front, back, andpop_back member functions is not specified  vides referential integrity and strong exception safetye Point is
if the underlying container is empty. Clearly, there is achf® that the safety guarantees are provided without relaxiegptr-
avector for which the behaviour of these member functions formance requirements specified in the+Gtandard. This is in a
is specified. Also, the behaviour eperator[] is unspecified stark contrast with the earlier work (see, e.g. [1]), whéeetech-
when the array index is out of bounds. Often this comes as a big nique of making a complete copy is offered as an option toexehi
surprise for novice programmers. Even though range chgckin the strong guarantee of exception safety. However, it totdng
is done byat member function, this function is seldom used. time for us to get this version correct. For example, the tgmiu
Hence, there is a need forvactor for which range checking sketched in an earlier working paper [20] was not fully corréut
can be switched on and off when desired. a bug was found during the implementation phase. The compact

Unspecified behaviour:In the G+ standard, the behaviour of



version is implemented using a hashed array tree [37] agttheru
lying data structure.

By examining the specification in the+& standard carefully, an
observant reader can see that the requirements are produced
verse engineering one particular implementation, onestsamilar
to cphstl::fast_vector storing elements contiguously. Hence,
it should not come as a surprise that other implementationaat
fully standard compliant. In particular, our safe and coaotpeer-
sions do not store the elements in a contiguous memory ségmen

ilar thoughts appear in a more general context, for example,
[17, 27]):

Normal generic use: A generic class template defines a family of
classes. As part of a normal instantiation process a user can
select a class from this family by specifying the types to be
used for substituting the template parameters. The user can
use the components of the CPH STL in the same way as the
components of the & standard library.

As a consequence of this the elements are not addressable. AdSelective use:The user can choose between alternative predefined

ditionally, we have to rely on different kinds of proxy objsso
some operations, likeperator[] andoperator* for iterators,
return an implementation-defined proxy object, instead wfar-

ence orconstreference to an element as required by the standard.

For the very same reasamctor<bool> is sometimes said to be
an almost container with an almost random-access iteratoe &
does not fulfil all the requirements specified for the corgaiand
random-access iterator concepts.

1.2 Outline of the present paper
Instead of just providing some predefined behaviours, weldpv

a component framework which allows us (and others) to extend

the library with new facilities. Using the terms of Oppermamnd
Simm [30], the CPH STL is bothdaptive i.e. its components are
able to change their behaviour based on the type argumess gi
by the user, anddaptablei.e. the components can be changed and
extended by the user who can provide new implementatiorthéor

template arguments accepted by the component framewonk. Ou

framework can be used for realizing most of the knawnator im-
plementations. The component framework+¥ettor is described
in Sections 2, 3, and 4. When developing this framework, wé& to
inspiration from a similar framework introduced for binagarch
trees by Austern et al. [5]; a component framework for asgive
containers is also available at the CPH STL [36].

We had several reasons for introducing component frameswork
into our library. We wanted a high level of code reuse, easaaih-
tenance, and fair benchmarking. Now it is possible to pre@dew
vector kernel by writing a few member functions, whereas a com-
plete vector implementation [9] must provide 40 member func-
tions and seven operators. Also, to a high degree we havedden
to avoid copy-paste code which eases the maintenance dbtagyl
considerably. Furthermore, we can do benchmarking by ¢hgng
the kernels and policies, and keeping the other parts ofdtle an-
changed. This really shows the effect of a particular chaHgece,
hopefully, our benchmarks report differences in the pentorce of
data structures, not the cleverness of the programmers. &e m
some additional remarks on reusability in Section 6.

Naturally, it is interesting when a container library camcmat-
ically adapt itself to different usage scenarios, and perfopti-
mizations and other tasks without user intervention. Inliteea-
ture, the topic has been discussed under the name actiagidibr
[12]. For a long time, generic programming has known to be a
promising approach for generating customized softwarepoem
nents. However, in this point we are more pragmatic thariezarl
authors. In our opinion, in €, the facilities provided for compile-
time reflection and metaprogramming are still too primitivée of
great practical value. We discuss adaptivity from our pointiew
in Section 7.

behaviours, like between the fast, safe, and compact cantai
implementations. A type of use, where parameters impact the
performance of components, is common in generic software
libraries. For example, in LEDA [26] some container classes
accept additional implementation arguments.

Integrated use: The user can compose existing—internal or
external—components. For example, in the Boost graphriibra
[34] the performance of many graph algorithms can be tuned by
non-functional parameters.

Extended use:The user can extend the library by writing new
components. Already the users of the+Gtandard library can
provide their own allocators and comparators, but we go even
further. We allow our users to design and implement their own
iterators, policies, and container kernels.

To facilitate extending use, it is necessary that the socode of
the library is made available for the users. We close oundision
on adaptability in Section 8.

Our contribution can be summarized as follows.

e We show how a componentdctor) from the C++ standard
library can be extended to a component framework still mrovi
ing the same functionality as required by the«Gtandard. Our
description can serve as a starting point for future workrwhe
building similar component frameworks.

¢ We show that a framework-based implementation of a compo-
nent Fector) has an acceptable performance overhead. (See
Section 5.)

¢ We show that a componentdctor) can be made to guarantee
the strong form of exception safety for all container opera
and fulfil the same theoretical performance requirements as
the corresponding unsafe variant. The programming teclesiq
used have already shown to be useful when implementing other
safe components.

* \We show that the cost of safety can be high in terms of actual
running time. This is mainly due to the loss of spatial lowali
in memory references and the overhead caused by additional
memory management. (See Section 5.)

We hope that the ideas presented in this paper will be of lepefi
other persons engaged in the design and implementatiomefige
software libraries, or in the tools used in their developtmen

2. Decomposition

In this section we give an overview of our adaptable compbnen
framework forvector, and in the following two sections we de-
scribe some of the architectural elements in greater ddtad de-

Our generic component frameworks are open and adaptable.sign of a component framework can be seen as an application of

In the literature many different words are used to descritepa
tation activities, including customization, configuratjonodifica-
tion, extension, personalization, and tailoring. In diffiet contexts

the template-method design pattern [14]. However, sinceele
on G++ templates, not on inheritance, the implementation-sgecifi
details are specified by the template arguments given focahe

the meaning of these words can vary. When we talk about adapt- ponent framework. Hence, the design is also related to theegly

ability, we mean that the library offers several levels aiges (sim-

design pattern.



During the years the CPH STL has become a multi-interface li-
brary which supports the-& standard library [9], LEDA [26], and
its own application-programming interfaces (APIs) foresa data
structures. All APIs are decoupled from their implemetasi us-
ing the bridge design pattern. Because of this design cheieean
conveniently support several APIs. Many of the member fonst
provided by these APIs are actually convenience functisagp
start with we extracted a core of all the member functions.céle
this core arealizator. The iterators are also decoupled from the re-
alizators in order to provide a common means of realizing&éor
the LEDA APIs and iterators for the STL APIs.

After this initial phase, the realizator interface fesctor has
to provide 20 member functions. The realizator class sgescHi
skeleton that must be filled in by the user with policies. Aipols
the generic variant of a strategy used in the strategy desgern
[2]. A policy can be used to customize the class it is giverrtohe
original design of the STL, allocators and comparators easden
as policies that are given to the container classes.

In our source of inspiration [5], a component framework far b
nary search trees was introduced. It is natural that the weain
ability between the different variants of balanced searebs is
the balancing mechanism, which can be placed in a policysclas
Other variabilities are the searching mechanism used forching
specific elements and the encapsulation mechanism usetbfer s
ing the information (nodes can store a colour or some other ba
ancing information). To create a similar component franmévior
vector, we had to do a variability and commonality analysis of the
data structures proposed in the literature. Such an asakstaled
that most implementations are built on the following corisep

Slot: This is a memory location which stores a single element, or
a pointer to a proxy that stores the element or knows where the
element is stored.

Segment: All vector implementations maintain a collection of
memory segments, each consisting of a sequence of slots.

Directory: There is a directory that keeps track of the memory
segments reserved. A directory can be of varying complgifity
there is only one memory segment in all, the directory isdtjv
but more complicated alternatives are also possible.

STL container | element LEDA containef €lement
allocator realizator
Provide an API| realizator Provide an APIf encapsulatg
to be used by | iterator to be used by
the clients [9]. the clients [3].
framework element iterator realizator
allocator surrogate
Delegate the | kernel Provide a encapsulatg
work to surrogate uniform way of| reference
different encapsulatd traversing over
policies. reference the elements.
kernel element encapsulator | element
allocator allocator
Handle encapsulatd Encapsulate arf
memory elementin a
management. small object.
surrogate kernel reference element
iterator allocator
Function as a Encapsulate a | encapsulatd
substitute for a reference to an
kernel. elementin a
small object.

Figure 1. The big picture. In each CRC card, the class/concept
name is listed in the upper-left corner, the responsibsi@appear
on the left below the name and the collaborators on the right.

tual specification of th&alueType and allocator concepts can be
found in the G+ standard. A container can access the elements
via iterators. The conceptual specification of iteratoraegts can
also be found in the €+ standard. To implement an iterator, one
should somehow specify the slot, segment, and directoryhiichw

We decided to package the management of memory segment§he element pointed to lies. When this information is amalt

and the directory inside a sm&krnelwhich is given as a template
argument to the framework. There is a clear contract betileen
framework and the selected kernel: the framework takes én th

is possible to locate the element and to advance an itexatoafd
and backward arbitrary many steps.
The purpose of the proxy design pattern is to provide a means

elements and moves them around, and the kernel takes care oPf controlling access to an object. We have found it necgssar
memory management. As a concept a kernel is defined by theto employ several different proxies in order to achieve mahy

minimal interface which any implementation must complyhwit
Let N denote the type of sizes aRdhe type of a proxy functioning

as a substitute for a reference to an element. In addition to a
constructor and destructor, wctor kernel should provide the
following operations:

N size() const: Get the number of elements stored.

void size(N n): Set the number of elements storechto

N max_size() const: Get the maximum number of elements that
can be stored.

N capacity() const: Get the current capacity of the kernel.

P access(N i): Convert a logical index to a reference to the data
stored at the corresponding slot.

void grow(N ¢): Increase the number of elements stored layN.
void shrink(): Fitthe capacity to the number of elements stored.

In addition to the kernel, the framework accepts the types of
elements and an allocator as template arguments. The futlego

the desirable safety properties. The proxies used appetaran
varieties. Asurrogateis used as a substitute for some real subject;
to implement this proxy, we maintain a single pointer to thealr
subject and access the real subject via this pointeegapsulator
[28] is used as a replacement for a real subject such thatrtixg p
and the real subject are functionally identical. In patacuve need

a surrogate for a kernel and we have to encapsulate an eleanent
reference to an element, and a pointer to an element. Thegeirp
of proxies will become clearer when we give more details @n th
safe variants ofector.

In Figure 1, we use the CRC cards [7] to summarize the most
important concepts involved.

The user can assemble a realizator by specifying the pslieie
quired by the framework. For example, to getector that stores
the elements directly inside the slots and maintains theehés
in a single contiguous memory segment, the user could wrée t
code given in Listing 1. Observe that, as proposed in [4], exeh
combined the implementations of mutable iterators and itabia
iterators into the same class; the selection of a propeatdeis
done by a Boolean value.
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Listing 1. An example of the use of the framework.
#include "direct -encapsulator.h++”
#include "dynamic-array.h++”
#include <memory> // defines std::allocator
#include "rank-iterator.h++”
#include "stl-vector.h++” // defines cphstl::vector
#include "vector -framework .h++"

int main() {
enum {immutable = true};

typedef int v;

typedef std::allocator<V> A;

typedef cphstl::direct_encapsulator<V, A>E;
typedef cphstl::dynamic_array<V, A, E>K;
typedef cphstl::vector_framework<V, A, K> R;
typedef cphstl::rank_iterator<R> I;

typedef cphstl::rank_iterator<R, immutable> J;
typedef cphstl::vector<V, A, R, I, J>C;

Cv;

}

3. Kernels

In this section we will briefly describe the kernels which avail-
able in ourvector framework at the moment. The kernels are dy-
namic array [8], hashed array tree [37], and levelwiseealled pile
[21]. The selection of these kernels was based on the rexyite-
vious benchmarks performed in our research group and the des
able properties of the data structures. A dynamic array earsbd
to realize avector that stores the elements contiguously, hashed
array tree is space efficient, and levelwise-allocatedgfitss good
worst-case running times. Throughout this section we asshat
the elements are stored directly at the slots; in the nettosewe
will consider other options to encapsulate elements.

Each kernel has sizewhich denotes the number of elements
stored, and aapacitywhich denotes the actual number of slots
allocated for storing the elements.dfdenotes the size andthe

capacity of a kernel, we usk Lof n/N to denote the currerbad
factor. When\ = 1 and we want to increase the size of the kernel,
an expansion is necessary and #éxpansion factorx determines
the capacity just after the expansion such that an and\ =

1/a. When the load factor becomes too small, a contraction may
take place; thecontraction thresholds specifies the minimum
acceptable load factor.

expansion factor and the contraction threshold used. Bkipge
at the source code @ftd: : vector that comes with our compiler
(gcc version 4.2.4), we saw that it used expansion faatef 2 and
contraction threshol@ = 0 (no contraction done). In our current
implementationoe = 2 and = 1/4, but theshrink operation
can be switched to do nothing if wanted.

The reorganization of the array is done as follows: Allocate
a new array of load factot/«, copy the elements from the old
array into the new array, deallocate the old array, and adjes
pointer which gives the start address of the array. The reagy
we have slack betweelh and1/«a, and 1/« and g is that the
reorganization is rather expensive because of memoryaditots
and copy operations. If we did not have this extra slack, aeecp
of intermixed insertion and erasure operations could miaikedata
structure very expensive and unattractive.

Since the elements are stored in an array, the efficiencyl of al
array operations is the same as for a fixed-sized array, exioep
cost associated with the reorganizations. According tcthedard
amortized analysis (see, for example, [11, Section 17thg),ad-
ditional cost incurred by reorganizations is oiil1) per modify-
ing operation. For our implementation, the worst-case san-
sumption of a dynamic array storingelements can be as high as
6n+ O(1). The worst case occurs when the old array uses only 1/4
of its capacity, which means thah slots are in use, and the new
array uses double the current size, which meanslots.

3.2 Hashed array tree

The hashed array tree consists of two parts: a directoryzefusi
and©(m) segments of siza. The directory stores pointers to the
beginning of respective segments. We demoés thesegment size
and we ensure that it is a power of two at all times. We only al-
locate space for segments which store elements, and weaimaint
the invariant that at mosb(1) segments are non-full. When the
maximum capacity for the current segment size is used, gaeor
nization is performed. In such reorganization the new seqsiee
is determined and all elements are relocated to a new datzste
using this new segment size. Also, when the load factor gets\b
1/8, a similar reorganization is carried out. A lookup of an edein
with index i is done by accessing the slé/i/m|][i mod m] in
the directoryd. In the current implementation this computation is
done fast using a shift and a bitwise-and operation. In Ei@J@an
example of the data structure storing the integérd, ..., 15) is
shown.

The hashed array tree is our preferable data structure or th
compact variant otphstl: :vector since the memory overhead

The worst-case space consumption of the data structures is¢&n be bounded b§(y/n), n being the current size. To achieve this

summarized in Table 1 for some typical valuesxadind S.

Table 1. Worst-case space consumption of awctor kernels
when elements are stored directly at the slots. Hedenotes the
number of elements stored.

Kernel Space consumption
Dynamic array & = 2; 8 = 1/4) 6n + O(1)
Hashed array treex{(= 4; 8 = 1/8) n + O(y/n)
Levelwise-allocated pile = 2; 8 = 1/2) 2n + O(lgn)

3.1 Dynamic array

A dynamic arrayis an array, the capacity of which varies as a
function of its size. The elements are kept in a contiguousarg

space bound, the reorganization has to be done such that argnem
segment in the old data structure is immediately releasted afi

its elements have been moved into the new data structuree Sin
in both data structures the sizes of the directories andities sf
the non-full segments are proportional\a, the amount of extra
space used, even during reorganization, is @i(y/n). Observe
that for the safe version this optimization is not possilihee the
copy constructor for elements is provided by the user anduit ¢
fail by throwing an exception. Therefore, an element copyas
necessarily reversible, and the old segments can first based
after all copies have been taken. Otherwise, some data magte

3.3 Levelwise-allocated pile

A levelwise-allocated pile is similar to a hashed array .ti¢ew-
ever, its directory is a smallector (whose initial capacity is set
to 32) and memory segments are arrays of &zevherek is a

segment, and when this segment has no empty slots or too manyparameter stored at the kernel. The data structure is ergaloyl

empty slots, the elements are reallocated to another dcayally,
a dynamic array is a family of data structures depending en th

increasingk by one and allocating a new segment of st?eand
contracted by decreasingby one and deallocating the last empty



Figure 2. The organization of data in a hashed array tree.

segment provided that the second last non-empty segmeituadtas
more than, say, 8 elements. A lookup of an element with inidisx
performed by accessing the stdtlg(i + 1) |][i — 21'8G+D) 4 1]
in the directoryd. An example of a levelwise-allocated pile storing
integers(0, 1, ..., 14) is shown in Figure 3.

This data structure is attractive since elements are negeeth

maintains pointers to encapsulators and the iteratorspalsi to
encapsulators. To maximize genericity, our equivalensieer to
std: :vector stores an array of encapsulators. For this version, ev-
ery encapsulator is a class containing the element alorfgmem-

ber functions for accessing that element.

Keeping just one pointer, from a memory segment maintained
by the kernel to an encapsulator, is not enough for guarigfeef-
erential integrity. When an iterator is advandesdiots, the iterator
needs a pointer from the encapsulator to the correspontbhgns
the kernel, so it can get the pointer to the encapsulatoriwifésk
slots from the current slot. The backpointer from the enatasr
to the kernel slot does not point to the memory segment attplic
since a memory segment may be reallocated every time the size
of the kernel changes. Instead, each encapsulator storieslen
of the corresponding slot. Additionally, each iterator bhakeep
a pointer to the encapsulator and to the kernel. Now thetdera
can execute an advance operation by retrieving the index fne
current encapsulator and then using #ieeess member function
of the kernel to get the pointer to the desired encapsulBiming
insertions and erasures we need to update the indices imtap-e

because of an expansion or a contraction. Due to the dynamiza sulators, but since the pointers from the kernel to the endators

tion strategy the amount of space allocated is never mone tha
2n + O(lgn) if there aren elements in total. However, since the

are either copied or moved, this additional work does nailtés
any increase in the asymptotic time complexity. Indireatagrsu-

memory segments are of varying size, some space may be st du lation is illustrated in Figure 4.

to memory fragmentation. Also, the lookup formula can bebpro
lematic since it requires the calculation of the whole-nenlbga-
rithm. (This is a primitive operation in all Intel processgrCom-
pared to a hashed array tree, the computation of the whatdseu
logarithm is more expensive than performing a shift and wibé-
and operation.

0 1 3 4 6 7
7| 8] 9 |10]11]12]13]14]

Figure 3. The organization of data in a levelwise-allocated pile.

4. Proxies

Up to now we have assumed that the elements are stored diagctl
the slots. There are two major problems with direct encapisu.
First, modifying operations may invalidate iterators aefitrences

to elements held within the data structure (referentiagrity).
Second, it may not be possible to revert to the former state of
the data structure if the copy constructor of the elememtihran
exception (strong exception safety). In this section wé pvésent

the key ideas how to avoid both of these problems.

4.1 Referential integrity

The reason why lists and associative containers can gearaet-
erential integrity is that they store the elements in sdpasd
located objects. The same indirect-encapsulation mesimanan
be used fowector; this way we can achieve referential integrity
and partially strong exception safety. We denote the aikatab-
ject anelement encapsulata@ince its purpose is to encapsulate an
element in an appropriate way. After this modification, ankér

Framework

Kernel
i

A

/
[\

Encapsulato

Iterator

Figure 4. The encapsulator mechanism.

By letting the iterators contain pointers to kernels mayl sti
cause inconsistency. Namely, when two containers are suapp
iterators get invalidated. This problem can be solved hydhicing
a kernel surrogatewhich is a small object containing just one
pointer to the kernel. The idea is that iterators shouldesrs of a
pointer to the kernel, hold a pointer to the surrogate. Theogate
is allocated by an allocator and a backpointer to the suteoiga
maintained in the framework instance. Swapping two coetain
is now done as follows: First the pointers stored in the gates
are swapped, and then the backpointers to the surrogaté® in t
framework instances are swapped. The surrogate mechagmism i
illustrated in Figure 5.

4.2 Strong exception safety

General programming techniques for drafting exceptide-pao-
grams are discussed in [38], and specifics for creating agiiro
exception-safeector in [20]. We will not repeat the material that
can be found from the earlier sources, but concentrate omgéesi
issue that we have found problematic: How to makerator[]
strongly exception safe?



Framework failed and the container will still be in the same state a®fgef
the exception was thrown. If an exception is not thrown, the/ n

Kernel i Sgir,:?e%ate element is attached to the encapsulator and the old elemdetl-

| located. Referential integrity is still maintained sinbe fterators

A

point to encapsulators. In this situation, we say that tamehts are
encapsulatedoubly indirectly An overview of the different ways
/ \ to encapsulate elements is given in Figure 6.
Elements stored  Elements stored  Elements stored
directly indirectly doubly indirectly

Encapsulato Surrogate . ..................

Iterator

Figure 5. The surrogate mechanism.

Figure 6. The three different encapsulation strategies.

Listing 2. An error scenario fosperator[]

1 #include <stdexcept> // defines std::domairerror To maximize genericity the creation of encapsulator object
2 #include <stl-vector.h++> // defines cphstl::vector takes place in another class, in a so-caflactory. This class is
8 needed since an object of an encapsulator class is not aetess
4 Clat)sl.s my_class { created in the same way. For example, for the encapsulattcéiw
Z public: encapsulate elements indirectly, the object needs to beaadd

7 my_class(int cons® a) { and afterwards constructed; for the encapsulator whiclaese
s} lates elements directly, the encapsulator is just consdudo pro-

9 vide the two alternative behaviours, we used partial sfizatéon

10 my_class cons®& operator=(my_class cons®&) { when implementing the factory class.

11 throw std::domain_error(”...");

2} 4.3 lterators

1} As to iterators, we have predefined two different class tatept

one supporting direct encapsulatiorark iterator) and another

o int main() { supporting indirect encapsulatioproxy iteraton. The rank iterator

16 cphstl::vector<my_class> v,

17 v.insert(v.begin(), my_class(5)); keeps an index, which corresponds to the current slot, anéthéep
18 v[0] = my_class(6); // my.class::operator= fails to the surrogate object. The proxy iterator keeps a poimtehé
19 } encapsulator object, which corresponds to the current aiat a

pointer to the surrogate object.

To make the framework work for both kinds of iterators, the
member functions cannot accept iterators as input arguaerdas
return values. Inside the framework, indices are usedadstEor
the communication between the framework and containeritthe
erator class provides a conversion mechanism to conveteeat i
tor to an index, and vice versa. This conversion betweentiies
and indices is completely transparent; it is done by a paeme
ized constructor and a conversion operator. Both of thesabae
functions are protected so that they can only be used byitef;
in particular, thevector container must be a friend of the iterator
classes. If this was not the case, the iterator encapsulatuld
break down. A sequence diagram illustrating the convensienh-
anism is shown in Figure 7.

Let us look into the scenario shown in Listing 2. In this pieogg
vector v that consists of objects of typey_class is created,
an element is inserted inte, and the created value is modified.
During the last operation an exception is thrown, and theasoer
is now in an inconsistent state. This means thatwurtor does
not provide the strong form of exception safety. One mayeatbat
the exception was not thrown in the scope of the containet,iso
the user’s responsibility to handle possible exceptioresdidagree,
since the user cannot necessarily recover from this error.

To provide a safe mechanism for performing this operatian, w
will ensure that this exception is handled within the scopéhe
library. According to the &+ standardpperator [] should return
a reference to the type of the value, which we cannot coritmel. Client Container Realizator
stead, we will return aeference proxywhich we can control. The : .
behaviour is almost the same as if a reference was returrred. T E
reference proxy hasperator= as its member function which will ,
perform the assignment withintey -catch block. We need to make ! )
some changes to the underlying data structure for it to waince PSSyt g :
if an exception occurs, we cannot necessarily undo thismadte- ‘ ‘
cause an exception can be thrown in the copy constructoiioo- ' :
ing the element outside the encapsulator, and allocatiaglace Figure 7. A sequence diagram showing what happens in an
for it with an allocator, solves our problem. Nayerator= allo- insert operation.
cates a new element and explicitly invokes the assignmearatqy;
if the operation fails, we deallocate the element whosecation

insert (index, v)

insert (iterator, v)




5. Benchmarks

There are two questions related to our framework which cbeld
interesting to answer:

1. Does the use of the framework result in any performan®los
2. What is the extra cost associated with safety?

To answer these questions we performed some experiments usi
the framework. In this section we describe the experimamsand
report the results obtained.

The overall picture of the experimental results was very-con
sistent across the computers where we ran the benchmarks. Th
results reported here were carried out on a PC with the fatigw
configuration:

CPU: Intel Core 2 Duo at 2.4 GHz

Memory size: 2 GB

Cache size:2 MB

Operating system: Ubuntu 8.04.2, kernel 2.6.24
Compiler: gcc 4.2.4 with optimization flag-03.

The experiments were run on a dedicated machine by closing do
all unnecessary system processes. Each individual expetriwas
repeated 10 times to be sure that the clock precision would no
cause big inaccuracies in the results.

In our experiments, the elements stored were integers. We co
sidered the three kernels combined with different encapisul
policies (but we only report the results for the dynamic yanéth
doubly-indirect encapsulation). For the sake of compariae also
report the results obtained fetd: : vector. Letv andw be two in-
tegervectors. We performed five experiments for different values
of n:

push_back: Fori € [0,n): v.push back(i).
pop-back: Fori € [0,n): v.pop-back().
operator []; sequential accessfFori € [0,n): v[i] = 0.

operator[]; random access:Fori € [0,n): v[w[i]] = 0. Be-
fore this, the elements itnwere randomly shuffled.

insert: Fork € [0,100): v.insert (v.begin() + n/2, k).

In our graphs we report the execution times per operatioa.tifine
needed for all initializations is excluded in the numbesoréed.

The results obtained are shown in Figures 8, 9, 10, 11, and 12.
In general,std: :vector is much faster than the CPH STL im-
plementations. However, the dynamic array with direct peuta-
tion, which is a similar tatd: : vector, is not much slower. In an
earlier study [36] we have shown that it is possible to impam
a component framework with an acceptable loss in performanc
This also seems to be true for owgctor framework. Even if our
safe variants maintain the desired asymptotic complettigycon-
stant factors introduced are high. Each level of indirechicreases
the execution time by a significant additive term. Cache esissd
memory allocations are expensive in contemporary comgluter

A thorough inspection of the figures gives rise to two addio
remarks. All our kernels ensure that the amount of space issed
linear in the number of elements stored (provided thatrtserve
member function is not called). From Figure 9 we can see tisit t
makespop_back much slower than that available in the standard
implementation. However, the cost pép_back is comparable to
that of push_back which should be acceptable for most applica-
tions. From Figure 12 we can see tHalsert is extremely slow
for a levelwise-allocated pile. The execution time of thedi ver-
sion is about the same as that of the indirect version. Thsnsie
that the operation is CPU bound, indicating that the contmta

of the whole-number logarithm is expensive. The problenha t
the framework calls theccess member of the kernel when copy-
ing the elements, and this is done for each element. If copyizs
implemented in the kernel, most of these computations cbald
avoided. This example shows that a framework-based appezac
incur extra overhead.
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Figure 8. Experiment withpush_back.

pop_back for integer data
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Figure 9. Experiment withpop_back.
6. Reusability

It is well-known that LOC is a questionable software mettit.
spite of this we carried out a brief analysis on our code b&se.
far, we have implemented three differerictor kernels and each
implementation comes with three variants: fast, safe thatiges
iterator validity, and extra safe that also provides thersgrform

of exception safety. We wanted to avoid the situation whbesé
nine variants would require nine times as much code as aesingl
complete implementation. We have succeeded in this.

There are different ways of organizing template source code
We try to provide a declaration of a component in a separate
header file (h++ files) and a definition of the member functions
in another implementation file. {++ files) if we expect that the
component will be used by external users. In componentsatieat
small or are only meant for internal use, the member funstion
are implemented inline, and no separate implementationidile



operator[] for integer data (sequential access)
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insert for integer data (100 insertions in the middle of a sequence)
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Figure 10. Experiment withoperator []. Each element is visited
once in sequential order.

operator[] for integer data (random access)
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Figure 11. Experiment withoperator []. Each element is visited
once, and these visits are done in random order.

provided. When interpreting the results of LOC calculatiotihe
code duplication due to separate declarations can be pnakie
Since the declarations could be generated automaticadlygmore
the overhead caused by them.

All source code related to the existing implementationsuis-p
lished in an electronic appendix associated with this p§P&}.
Table 2 summarizes the (logical) LOC used by each file.

Figure 12. Experiment withinsert. Repeatedly insert new ele-
ments in the middle of the sequence.

Table 2. LOC counts for our files.

File LOC
stl-vector.h++ 102
stl-vector.i++ 249

vector-framework.h++ 62
vector-framework.i++ 137
surrogate.h++ 12
direct-encapsulator.h++ 20
indirect-encapsulator.h++ 39
doubly-indirect-encapsulator.h++ 72
reference-proxy.h++ 95
rank-iterator.h++ 73
rank-iterator.i++ 121
proxy-iterator.h++ 65
proxy-iterator.i++ 140
factory.h++ 33
dynamic-array.h++ 67
hashed-array-tree.h++ 101
levelwise-allocated-pile.h++ 59
slot-swap.i++ 22
uninitialized-copy.i++ 25

mentation, iterators were realized as pointers to elemsmtao
separate classes were needed for them. Also, no separate dec
larations for any of the classes were provided. In our case, a
dynamic-array kernel with direct encapsulation would espond

By looking at these numbers and the actual code, we can still to their implementation. Hence, if we ignore the declaratjo

identify some code duplication; the three encapsulat@sela and
the three partial specializations of the factory class &mhetype of
encapsulator are very similar. Probably some additiongjuage
support would be needed to be able to handle encapsulatars in
cleaner way. (For Smalltalk, an extension of the run-timstesy
has been proposed for this purpose [28].) One can see thietthe
nels are relatively small. Each kernel has to provide ninentrex
functions and normally we use about 100 LOC, or less, forithe i
plementation. It is the kernel that crystallizes the essari@ data
structure. We expect to see these kernels in textbooks onithligns
and data structures.

As we wrote in the introduction, a complete implementa-
tion of vector described in [29] took 365 LOC. In their imple-

we use 2494t1-vector.i++) + 137 (vector-framework.i++)

+ 12 (surrogate.h++) + 20 (direct-encapsulator.h++)

+ 95 (reference-proxy.h++) + 121 (rank-iterator.h++)

+ 33 (factory.h++) + 67 (dynamic-array.h++) + 22
(slot-swap.i++) =25 (uninitialized-copy.i++) =781 LOC

to obtain about the same functionality. Because of gengralie
have more than doubled the amount of code needed. We wik leav
it for the reader to decide whether it is worth paying thigeiin the
increase on the complexity and the amount of code. The isetka
complexity is in particular apparent in code that is comnmrbbth

the safe and unsafe components. The common pieces musebe car
fully crafted to be sure that the safety of the safe implerugos

is not lost.



7. Adaptivity

In this section we describe in which ways our current impletae
tion of the component framework feector could be made adap-
tive. For benchmarking purposes, in the actual realizativa still
have full control over the instantiation of template partere We
also give a list of the language facilities inr€that could be im-
proved to make the development of active libraries easier.

7.1 Overriding default implementations

A naive implementation ofinsert moves the elements between
the given position and the end of thector forward and copies
the given element(s) into the hole created. According t@tmtract

have a correct outcome. This is true, for example, for ailhptdd-
data (POD) types.

OPTIMIZATION 2. If both in the source and the target the elements
are stored in a contiguous memory segment, if the elements ar
POD types, and if the sizes of the elements in both arrayshare t
same, copy the elements using the fastcpy function, which is
available at the standard C library.

One way of implementing this optimization is to use the
type traits available at the standard library together ity dis-
patching. However, according to the technical report e G-
brary extensions [18], it is unspecified under what circamsés

made between the framework and each kernel, the framework isstd: :tr1::is_pod<V>::value is true. Hence, it is unspecified

responsible foinsert. However, sometimes the framework does
not have enough information to do the movement of elements
efficiently. For example, our benchmarks showed thatert was
unnecessarily slow for levelwise-allocated piles. To vecdrom

this inefficiency, we can let the kernel implemenisert as well.
After this the framework can invoke the function providedthg
kernel. This leads to a general optimization strategy ths¢mbles
member-function overriding achieved via inheritance.

OPTIMIZATION 1. If a policy provides an implementation of a
member function, for which a framework provides a defauk im
plementation, override the default implementation by kiwg the
function in the policy.

Our prototype implementation of this optimization religsthe
substitution-failure-is-not-an-error principle [40,c%ien 8.3]. We
wrote a macrdiAS_SINGLE_ELEMENT_INSERT that tests whether
the kernel has aimsert member function that takes an index and a
reference to an immutable element as parameters and reitms
ing. This macro is then used as a compile-time function teat r
turns a Boolean value. In the framework the actual impleateort
of insert invokes a private member function that comes in two
versions, one that invokes the member function in the keandl
another that provides the default implementation. Thectele of
the correct version of that private member function is dopedn-
verting the Boolean value returned by the macro to a type gnd b
relying on function overloading. The programming techeiqised
here is called tag dispatching, and it has been used in maoce®pl
in earlier implementations of the STL.

A more elegant implementation could be obtained by relyimg o
concept-based overloading. First, a condgptSingleElement-
Insert is defined to specify that the given type must have a
member function with the signatureid insert(size_type,
value_type const&). Second, this concept is used to define two
overloaded versions dfsert in the framework. The first version
requires that the kernel, which is one of the template patensie
fulfils the requirement specified by the concept and the skcon
version requires that the kernel does not fulfil this requieat. As
above, the first version employs the member function in thiaede
and the second version provides the default implementafimte
we did not have a compiler available that could handle caisgcep
we were not able to try this approach in practice.

when the optimization is in use, if it is in use at all. Cleatiy-
der these premises it is difficult to build a portable actilsedry. In
general, the facilities for compile-time reflection, i.eetability of
a program to inspect its own high-level properties at coeniihe,
could be improved in &+.

7.3 Selecting the best-suited encapsulation policy

We observed that forector implementations based on direct en-
capsulation are slow when elements being manipulated genex
sive to copy. This inefficiency is due to relocations of eletsgin-
volving element constructions and destructions. A fastélviour
can be obtained by letting the array store pointers to elésnen

OpPTIMIZATION 3. Ifindirect encapsulation is more profitable than
direct encapsulation, store elements indirectly; othemvistore
them directly.

To implement this kind of optimization, we would need a
compile-time operatotostof that evaluates the cost of a given
expression at compile time. The idea that a compiler doedipgp
during compilation is interesting. Since there is no opEraéstof
available, we are only able to approximate this optimizatieor
examplesizeof can provide a good estimation whether a copy of
an element will be more expensive than a copy of a pointerthisit
is not necessarily the case. For example, think of a socktigta
small object but it can be costly to copy. Also, the expressay
costof should be chosen carefully to take into account the cost of
indirection and the cost of cache misses. We admit that profil
can slow down compilation too much so it might be wiser to rely
on an external configuration tool.

As to the selection of a suitable encapsulation policy, dlaim
situation appears when instantiating a kernel that gueesrgtrong
exception safety and referential integrity. Depending drether
the copy constructor for the elements can throw an exceptiont,
the simplest possible encapsulation policy can be seletithdut
loosing the strong form of exception safety.

OPTIMIZATION 4. If the copy constructor for the elements cannot
throw an exception, store elements indirectly; otherwtseesthem
doubly indirectly.

To implement this optimization, thénas_nothrow_copy

We hope that the reader can recognize the significance of thistype trait from the standard library could be used. How-

idea: it leads to extremely flexible interfaces and makesitwel-
opment of efficient component frameworks easier. Possibiyn e
direct language support should be provided for this facilit

7.2 Selecting the fastest copy algorithm

In our vector framework, copying of elements from one memory
segment to another is an often-recurring operation. Todsppe
copying, a standard optimization described, for exampl§25] is

to utilize an efficient bitwise copying method if such copyiwill
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ever, again the technical report on+< library extensions
[18] does not specify under what circumstances, if any,
std::trl::has_nothrow_copy<V>::value evaluates to true.

8. Adaptability

For years, the CPH STL has been an interesting teaching tool
when educating software developers at our university. Wee ha



been convinced that the library might also be used at otheern
sities for teaching purposes. However, up to now this hahapt
pened. After introducing component frameworks into thealip
we expect that the deployment at other sites will actualjyplea.

The development of component frameworks is demandingt Firs
an attempt of trying to extend an existing component franewo
with new features reveals the weaknesses of earlier design d
sions. To understand a complete component framework arnxt to e
tend it requires good developer skills. We claim that the GAHL
is a good platform for training these skills.

The development of component frameworks, and generic pro-
gramming in general, requires extreme discipline. Evehdfuser
or the developer of a component framework makes a triviat mis
take, the error message produced by the compiler can besasden
This is simply because the types involved are so compli¢caked
description of a type based on a component framework wittinall
instantiated policies can easily fill a small computer scrééhe
developer community has hoped that+#Concepts (see, for exam-
ple, [15, 19]) could solve the problem with poor error messag
but we doubt that. We question whether it is a good idea to en-
code complicated adaptations into types. Even though ablgipt
of component frameworks is a nice feature, with currentsdlbé
development of frameworks is tedious.

The components of the CPH STL are extensible. We have al-
ready now a collection of programming exercises for our estisl
You could test your developer skills by solving any of thédaling
exercises.

EXERCISEL. Implement a newector kernel for the CPH STL.
Highly relevant candidates to consider include tiered vextde-
scribed in [16] and blockwise-allocated piles describedd].

EXERCISE2. In our current implementation of a levelwise-
allocated pile the directory is a fixed-sized array. To mdledata
structure fully dynamic and to provide the best possiblesivoase
performance bounds, we would needex t or implementation that
realizespush_back and pop_back at O(1) worst-case cost. De-
velop avector kernel that gives these performance guarantees.

ExeRcCISE3. Extend the framework such that the user can specify
both the encapsulation policy (direct, indirect, and daguinidirect
encapsulation) and the ownership policy (client owns, aiower
owns, and realizator owns) for the elements storedrator.

EXERCISE4. Components obtained by instantiating component
frameworks are often built on several layers of abstractibhis
would make the work of compilers harder, and sometimes perfo
mance penalties are introduced. Investigate the assendude
produced by your compiler to see what are the causes for the pe
formance penalties in ouector implementations. Can you tell
your compiler vendor how these could be avoided? Can yousell
how we could have avoided them?

The CPH STL is like any other software; it will never become
complete. By releasing these extensible component framkswo
we do not even aim at producing a complete—ultimate—relebse
the library. The whole point is to use the library in educatiand
let coming software developers extend the library. It isszifaating
idea that the users will continue the design and developuofehe
library by extending frameworks and writing new components

9. Conclusions

We conclude the paper with brief messages to different btaéle
ers in the software-library community.

Users of generic software libraries:The CPH STL provides fast,
safe, and compact variants for many of the existing stardard
library containers. Similar facilities could be providedhd are
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already provided, by other container libraries. Hopefullye
have made it clear that safety comes with a price tag. How-
ever, in applications, where safety has a higher priorignth
performance, it is natural to use the safe variants. Thisavay

can avoid many hard-to-find bugs. The safe components may be
particularly useful for educational purposes.

Designers of programming-language facilities/An  important
proclamation made in this paper was that ir+Ghe facilities
provided for compile-time reflection and metaprogramming
are far too primitive to be of practical value. Also, a streng
support for writing generic encapsulators would be defgrab
We hope that better programming-language support for gener
programming will be available in the near future.

Developers of generic software libraries:When developing the
vector framework, we encountered a problem which we had
not thought of before and for which we could not provide any
general solution: How to avoid or detect gracefully a misshat
between the template parameters given? It would be easy to
check that a given clagsconceptually fulfils all kernel require-
ments and another given classll encapsulator requirements,
but what ifE was not designed to work witk at all. The poor
user will waste his or her valuable development time to find ou
this sad fact. We leave the problem of designing mismateb-fr
component libraries as a challenge for other library depeis.

Teachers of software developersWe have used the CPH STL in
the exercises (weekly assignments and mini-projects) of ou
courses (generic programming and software construction) t
teach both design and programming. The student feedbatk fro
these courses has been overly positive. Students have foend
assignments interesting and challenging. But, yes, we &lage
received complaints about a heavy workload. Our recommen-
dation is that projects are not made longer than three weeks
before the students have enough practical experience arigen
programming. Due to the lack of adequate (open-source$,tool
weak students would waste their time if the project periodsew
longer. But still, as put by one of our students, it is better t
over-challenge than to simplify the assignments.

Software availability

The programs discussed in this study are available via theeho
page of the CPH STL project [13] in the form of a PDF document
[23] and atar file.
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