Navigation Piles

Using of the new data structure

- Sorting algorithms
- Priority queues
- Priority deques
- Implementation of other data structures
Structure Properties

Shape
- It is a complete binary tree of size $2^{n+1} - 1 \quad (n \leq 2^n)$

Leaves
- The first n leaves store one element each
- The remaining are empty

Branch nodes
- Each branch node stores the index – inside the leaf sequence dominated by the node – containing the relative top element

Representation
- The sequence $A[0..n)$ stores the elements
- The sequence $B[0..2^{n+1})$ stores the navigation information
Structure Elements

- **Element indices:**
 Indices of the elements stored in $A[0..n)$

- **Bit indices**
 Indices of the bits stored in $B[0..2^{\eta+1})$

- **Branch node indices**

- **Leaf indices**

- **Levels** (no larger than η)

- **Offsets**
 Indices stored in the branch nodes
A navigation pile of size 14 and capacity 16. The normal parent/child relationships are shown with dotted arrows and the references indicated by the offsets with solid arrows. The gray nodes are not in use.
Number of extra bits

- Number of branch nodes with depth δ ($0 \leq \delta < \eta$)
 $$n \cdot 2^\delta$$

- Maximum number of leaves dominated by a branch node whose height is γ
 $$n \cdot 2^\gamma$$

- Number of bits used for the offsets
 $$\sum_{\delta=0}^{\eta-1} 2^\delta (\eta - \delta) < 2^{\eta+1}$$
Operations

Construction

- Visiting the branch nodes in a bottom-up manner (depth-first order visit to improve the cache performances)
 - \(n-1 \) element comparisons
 - \(n-1 \) branch nodes with more than 1 child
 - \(n \) element moves
 - \(n \) elements copied to the container sequence
 - \(O(n) \) instructions
 - \(O(1) \) instructions for every comparison and move
Operations

top()

- $O(1)$ instructions
- Return the index stored at the root

push() ($n < 2^n$)

- $\left\lceil \log_2 \left(\lceil \log_2 n \rceil + 1 \right) \right\rceil$ element comparisons
 - Binary search on the path from the new last leaf to the root
- 1 element move
 - The element is appended at the end of the sequence $A[0..n)$
- $O(\log n)$ instructions
Operations

\[\text{pop()} \]

\(\ell \): index of the last leaf \((n - 1)\)
\(m\): index of the top element

Case 1: \(m = \ell\)

- The top element is erased and the offsets on the path from the new last leaf to the root are updated
Illustration of Case 1. The offset of the root is referring the last leaf. The leaves whose contents may change are indicated in magenta. In dark blue are indicated the branch nodes whose updating offset require one element comparison each. When updating the contents of the light blue branch nodes, no element comparisons are necessary.
Operations

\(i_1\): first ancestor of the last leaf having two children (in use)
\(n > 1\)

\(i_2\): second ancestor of the last leaf having two children (in use)
\(\ell \neq 2^k \ \forall k \in \mathbb{N}\)

\(k, j_1\): index of the leaves referred respectively by the offset stored at the branch node with index \(i_2\) and at the first child of that one with index \(i_1\) (or \(j_1 = \ell - 1\) if \(\ell\) is odd)

Case 2: \(m \neq \ell\) and \(k \neq \ell\) (or \(m \neq \ell\) and \(\ell\) is a power of 2)

- \(A[m] \quad A[n]\) and the element copied is erased
- The offsets stored at the branch node on the path from \([i_1.. i_2]\) are updated to refer the leaf at the position \(j_1\)
- The offsets stored on the path from the leaf at the position \(m\) to the root are updated
Illustration of Case 2. The offset of \(i_2 \) is not referring the last leaf. The offsets of the branch nodes in light blue will refer the leaf whose content is the number 4, and the the top element (44) will be overwritten by the current last leaf (22).
Operations

\(j_2 \): index of the element referred by the offset stored at the first child of the branch node with index \(i_2 \)

Case 3: \(m \neq \ell \) and \(k = \ell \)

- \(A[m] \quad A[j_2] \)
- \(A[j_2] \quad A[\ell] \)
- The element at the last leaf is erased
- The offsets stored at the branch node on the path from \([i_1. . . i_2]\) are updated to refer the leaf at the position \(j_1 \)
- The offsets stored on the path from \(i_2 \) (including it) upwards are updated to refer the leaf in the position \(j_2 \) if they referred earlier the last leaf
- The offsets stored on the path from the leaf at the position \(m \) to the root are updated
Illustration of Case 3. The offset of \(i_2 \) is referring the last leaf. The offsets of the branch nodes in light blue from the bottom till \(i_2 \) (excluding it) will refer the leaf \(j_1 \) (4); the offset relative to the branch node \(i_2 \) will refer the leaf \(j_2 \) (15); the top element (44) will be overwritten by the element in the position \(j_2 \) (15); finally the element of the current last leaf (22) will overwrite that one of the leaf \(j_2 \).
Operations

- At most $\lceil \log_2(n - 1) \rceil$ element comparisons
 - In each of the three cases only one path updating involves element comparisons
 - The depth of the root becomes $\lceil \log_2(n - 1) \rceil$ and at most one element comparisons is done at each level
- 0, 1 or 2 moves
- $O(\log n)$ instructions
In connection with `pop()` the top element is not overwritten, but it is saved at the earlier last leaf (`pop_and_save()` function)

The basic version of the sorting algorithm (Pilesort) is a sequence of \(n-1 \) `pop_and_save()` operations

The amount of extra space needed is at most \(4n \) bits because \(2^{\lfloor \log_2 n \rfloor} < 2n \)
Sorting

Element comparisons

- \(n-1 \) comparisons for the construction

\[
\sum_{k=2}^{n-1} \left\lfloor \log_2 k \right\rfloor < n \log_2 n - 0.91n
\]

- If we find the bottom element during the construction with at most \(\left\lceil n/2 \right\rceil + 1 \) comparisons (and keeping a separate copy of it) in order to reduce the number of moves, the bound becomes \(n \log_2 n + 0.59n + O(1) \)

Element moves

- Not more than \(4n + O(1) \) in the basic version

- Finding at the beginning the bottom element the bound becomes \(2.5n + O(1) \) (for every odd value of \(\ell \) if we need 3 moves for the execution of \texttt{pop_and_save()}, we will need at most 2 moves in the following iteration)
Priority Queues

1. **Dynamization of the container storing the elements**
 - Dynamization techniques developed by Katajainen and Mortensen
 - Space-efficient resizable arrays

2. **Dynamization of the bit sequence**
 - Bit sequence divided into blocks B_* of size 2^5 and B_h of size 2^h for $h \geq 5$
 - Bit sequence of the block B_* is kept in memory at all time
 - The largest block can be empty (deamortization of the cost of allocations and deallocations in proximity of block boundaries)
 - If there is an empty block and the largest nonempty block lacks more than 2^5 elements, the bit sequences for the largest block is freed
Illustration of the Priority Queue structure. A collection of navigation piles storing 77 elements. A space-efficient resizable array is used as the container for the elements. The gray areas denote empty memory segments allocated for dynamization purposes.
Priority Queues

Space
- 2^{h+1} bits for every B_h ($h \geq 5$)
- $4n + O(1)$ extra bits for all the priority queue

Construction
- $n + \Theta((\log_2 n)(\log_2 \log_2 n))$ element comparisons
- n element moves
- $O(n)$ instructions

top()
- We assume that $push()$ and $pop()$ maintain the top and iterator headers
- $O(1)$ instructions (following the cursor of the iterator headers)
Priority Queues

push()
- The element is inserted into the largest nonempty block (or, if it is full, into a new larger block and a new navigation pile)
- $2 \log_2 \log_2 n + O(1)$ element comparisons (the iterator and the top headers can need to be updated)
- 1 element move
- $O(\log n)$ instructions

pop()
- The top element is erased by overwriting with an element taken from the largest nonempty block
- We need to update also the top and iterator header
- $\log_2 n + \log_2 \log_2 n + O(1)$ element comparisons
- 2 element moves
- $O(\log n)$ instructions
Priority Deques

We pair the elements and we sort the resulting pairs.
If n is odd, we keep one element in a special block B_0.

The elements get partitioned in two distinct collections:
- top-element candidates
- bottom-element candidates

We build the extra information for the two priority queues.

Construction
- Not more than $1.5n + \Theta((\log_2 n)(\log_2 \log_2 n))$ comparisons and $n+1$ moves

top() and *bottom()*
- B_0 can cause 1 comparison
Priority Deques

- **push()**
 - If B_0 is empty the element being inserted is copied there
 - If B_0 contains an element this and the new one become twins, and this pairs is added to the data structure
 - In the latter case the resource bounds are 2 times those compared to the `push()` function
Priority Deques

- *pop_top() and pop_bottom(*)
 - These two functions are symmetric
 - We consider *pop_top(*)
 - If \(B_0 \) is empty we move the twin of the top to \(B_0 \), take a pair of elements from the last nonempty block
 - We carry out a partial path updating in the last nonempty block
 - We move the pair of elements from the last nonempty block to the block containing the top element and its twin updating a full path of extra information for both the elements
If B_0 contains an element this is used now as the new twin of the twin of the top element

After a single comparison the two elements are moved in their correct locations and we update at most two paths of extra bits

The resource bounds are about twice as high as those for the priority queues
Conclusions

It have been showed how it is possible to build and use a new data structure with which, in spite of low memory requirements, the worst-case bounds for the number of element comparisons, element moves and other instructions are close to the absolute minimum.

Is it possible to get similar performance bounds with a sublinear number of extra bits (for example, a sorting algorithm using $n \log_2 n + o(n \log_2 n)$ comparisons, $O(n)$ moves, and $o(n)$ extra bits)?

Is it possible to improve the `push()` function requiring a constant time without making worse the worst-case bounds for the other operations?