Title:
Relaxed weak queues: an alternative to run-relaxed heaps

Speaker:
Jyrki Katajainen

Co-workers:
Amr Elmasry and Claus Jensen

These slides as well as the underlying paper are available at http://www.cphstl.dk/.

© Performance Engineering Laboratory
Priority-Queue Operations

insert
input: element
output: locator

find-min
input: none
output: locator

delete
input: locator
output: none

delete-min
\[p \leftarrow \text{find-min()} \]
\[\text{delete}(p) \]

decrease
input: locator, element
output: none

meld
input: two priority queues
output: one priority queue
Various Approaches

- **winner tree**
- **loser tree**
- **heap-ordered tree**
- **weak-heap-ordered tree**
- **search tree**
- selection tree
- navigation pile
- binomial tree
- Vheap
- binary heap
- leftist heap
- weak heap
- AVL tree
Market Analysis

<table>
<thead>
<tr>
<th>Efficiency Method</th>
<th>Binary Heap Worst Case</th>
<th>Binomial Queue Worst Case</th>
<th>Fibonacci Heap Amortized</th>
<th>Run-Relaxed Heap Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>find-min</td>
<td>(\Theta(1))</td>
<td>(\Theta(1))</td>
<td>(\Theta(1))</td>
<td>(\Theta(1))</td>
</tr>
<tr>
<td>insert</td>
<td>(\Theta(lg , n))</td>
<td>(\Theta(1))</td>
<td>(\Theta(1))</td>
<td>(\Theta(1))</td>
</tr>
<tr>
<td>decrease</td>
<td>(\Theta(lg , n))</td>
<td>(\Theta(lg , n))</td>
<td>(\Theta(1))</td>
<td>(\Theta(1))</td>
</tr>
<tr>
<td>delete</td>
<td>(\Theta(lg , n))</td>
</tr>
</tbody>
</table>
| **meld** | \(\Theta(lg \, m \times lg \, n) \) \(\Theta(min\{lg \, m, \, lg \, n\}) \) | \(\Theta(1) \) | \(\Theta(min\{lg \, m, \, lg \, n\}) \) |}

Here \(m \) and \(n \) denote the number of elements in the priority queues just prior to the operation.
Our Work

Relaxed weak queues — an alternative to run-relaxed heaps:

- are simpler to program,
- work on a pointer machine except that \textit{meld} requires random access [pointer machine \(\approx\) C without arrays],
- are asymptotically equally fast,
- have low constant factors [\textit{delete} requires \(3 \lg n + O(1)\) element comparisons; can be improved to \(\lg n + O(\lg \lg n)\)], and
- use less space [\(3n + O(\lg n)\) extra words; \(4n + O(\lg n)\) with \textit{meld}].
Nonstandard Tree Terminology

- p is the **surrogate parent** of q.
- p is the **real parent** of r.
- Let s be a node in a binary tree. We call every ancestor of s that is a real parent of another ancestor of s a **real ancestor** of s.
Perfect Weak Heaps

A perfect weak heap is a binary tree having the following three properties:

1. The root has no left subtree.
2. The right subtree of the root is a complete binary tree.
3. For every node s, the element stored at s is no smaller than the element stored at the first real ancestor of s.

Fact 1. A perfect weak heap stores 2^h elements for some integer $h \geq 0$.

Fact 2. The root of a perfect weak heap must store a minimum element.
A **weak queue** Q storing n elements is a collection of disjoint perfect weak heaps. Consider the binary representation of n

$$n = \sum_{i=0}^{\lfloor \lg n \rfloor} b_i 2^i,$$

where $b_i \in \{0, 1\}$ for all $i \in \{0, \ldots, \lfloor \lg n \rfloor\}$. In its basic form, Q contains a perfect weak heap H_i of size 2^i if and only if $b_i = 1$, i.e.

$$Q = \{H_i \mid n = \sum_{i=0}^{\lfloor \lg n \rfloor} b_i 2^i \text{ and } b_i = 1\}.$$
Primitive Operations

Joining and splitting two perfect weak heaps of the same size:

Note that for a binary heap a join may take logarithmic time.
Heap Store

A **heap store** is a sequence of perfect weak heaps appearing in increasing order of height.

\[H_j \rightarrow H_k \rightarrow \ldots \rightarrow H_\ell \]

size \(O(\lg n) \)

input: \(H_i, \ i \leq j \)
output: none

inject

input: none
output: \(H_j \)

eject

input: \(H_\ell \) and \(H'_\ell \)
output: none

replace

Idea. Injections are done lazily by not doing all joins at once; we allow between zero and two perfect weak heaps of each size.

Theorem 1. All heap-store operations **inject**, **eject**, and **replace** take \(O(1) \) worst-case time.
Potential Violation Nodes

- A **weak-heap-order violation** occurs if the element stored at a node is smaller than the element stored at the **first** real ancestor of that node. In a **marked node** a weak-heap-order violation may occur.

- A marked node is **tough** if it is the left child of its parent and also the parent is marked.

- A chain of consecutive tough nodes followed by a single nontough marked node is called a **run**.

- All tough nodes of a run are called its **members**.

- The single nontough marked node of a run is called its **leader**.

- A marked node that is neither a member nor a leader of a run is called a **singleton**.
Node Store

The primary purpose of a node store is to keep track of potential violation nodes, and its secondary purpose is to store the heights and types of the nodes.

mark
input: a node
output: none

unmark
input: a node
output: none

correct
input: none
output: none

effect: Unmark at least one arbitrary marked node.

Theorem 2. The node-store operations mark, unmark, and reduce take $O(1)$ worst-case time.
Primitives Used by \textit{reduce}

a)
\[
\begin{array}{c}
p \\
q \\
s \\
A \\
B \\
C \\
D \\
\end{array} \rightarrow \begin{array}{c}
p \\
s \\
q \\
A \\
D \\
C \\
B \\
\end{array}
\]

b)
\[
\begin{array}{c}
p \\
q \\
A \\
B \\
C \\
\end{array} \rightarrow \begin{array}{c}
p \\
q \\
A \\
B \\
C \\
\end{array} \text{ or } \begin{array}{c}
p \\
A \\
q \\
B \\
C \\
\end{array}
\]

c)
\[
\begin{array}{c}
p \\
q \\
s \\
A \\
B \\
C \\
D \\
\end{array} \rightarrow \begin{array}{c}
p \\
s \\
q \\
A \\
C \\
B \\
D \\
\end{array} \text{ or } \begin{array}{c}
p \\
s \\
A \\
C \\
D \\
B \\
\end{array}
\]

d)
\[
\begin{array}{c}
p \\
q \\
r \\
A \\
B \\
C \\
D \\
\end{array} \rightarrow \begin{array}{c}
p \\
r \\
B \\
D \\
\end{array} \text{ or } \begin{array}{c}
s \\
q \\
A \\
B \\
\end{array}
\]
To facilitate a fast \textit{find-min}, a pointer to the node storing the current minimum is maintained and updated by all modifying operations. This \textbf{minimum pointer} refers to a root or to a potential violation node.

The minimum pointer points to the node storing the current minimum, so this node can just be returned.

\textbf{Worst-case time:} \(\Theta(1) \); no element comparisons
1. Allocate a new node and put e there.
2. Place the new node, which is also a perfect weak heap of height 0, into the heap store by invoking `inject`.
3. Correct the minimum pointer to point to the new node if e is smaller than the current minimum.

Worst-case time: $\Theta(1)$ with at most 2 element comparisons
\textit{decrease}(p, e)

1. Make the element replacement at \(p \).

2. Make \(p \) a potential violation node by invoking \textit{mark}.

3. Reduce the number of potential violation nodes, if possible, by invoking \textit{reduce}.

4. Correct the minimum pointer if necessary.

\textbf{Worst-case time:} \(\Theta(1) \) with at most 4 element comparisons
The idea is to extract the subheap rooted at p from the perfect weak heap, in which it resides, borrow another node q from the smallest perfect weak heap to fill in the hole created by p, and put the new subheap in the place of the extracted subheap.

Worst-case time: $\Theta(\lg n)$ with at most $3 \lg n + O(1)$ element comparisons
delete(p) — Details

1. Eject the smallest perfect weak heap from the heap store by invoking $eject$. Let q be the root of that perfect weak heap.

2. Repeat until q has no children:
 a) Split the perfect weak heap rooted at q. Let r be the root of the other sub-heap created.
 b) Remove the marking of r, if any, by invoking $unmark$.
 c) Insert the subheap rooted at r into the heap store by invoking $inject$.

3. If p and q are the same node, go to 11.

4. Extract the subheap rooted at p from the perfect weak heap, in which it resides, and remember its neighbouring nodes.

5. Repeat until p has no children:
 a) Split the subheap rooted at p. Let s be the root of the other subheap created.
 b) Push the subheap rooted at s onto a temporary stack.
6. Repeat until the temporary stack is empty:
 a) Pop the top of the stack. Let s be the root of the subheap popped.
 b) Remove the marking of s, if any, by invoking `unmark`.
 c) Join the subheaps rooted at q and s; independent of the outcome denote the new root q.

7. Put q in the place of p.

8. Make q a potential violation node by invoking `mark`.

9. If p was a root, substitute the perfect weak heap rooted at q for that rooted at p in the heap store by invoking `replace`.

10. Remove the marking of p, if any, by invoking `unmark` to update the node store.

11. If the minimum pointer points to p, scan all roots and all potential violation nodes to find a new minimum element and update the minimum pointer.
12. Reduce the number of potential violation nodes, if possible, by invoking *reduce* twice (once because of the new potential violation node introduced and once more because of the decrement of \(n \)).

13. Free \(p \) and return.
meld(Q, R)

Assume that the sizes of Q and R are m and n, respectively, and that $m \leq n$.

1. Move all singleton and run-leader objects from the node store of Q to the node store of R.

2. Eject all perfect weak heaps of Q and store them to a temporary stack S_Q.

3. Eject all perfect weak heaps of R, whose height is no greater than $\lceil \lg m \rceil$, and store them to a temporary stack S_R.

4. Process all perfect weak heaps in S_Q and S_R in height order and inject them into the heap store of R.

5. Reduce the number of potential violation nodes in R by at most $\lceil \lg m \rceil$.

6. Destroy Q and return R.

Worst-case time: $\Theta(\lg m)$ with at most $5 \lg m$ element comparisons
Open Problems

- Is fast *meld* possible without random access?

- Can the number of element comparisons performed by *delete* be reduced from $\lg n + O(\lg \lg n)$ to $\lg n + O(1)$?