Cache-Oblivious Algorithms and Datastructures

- What is Cache-Obliviousness?
- External-Memory Model (EMM)
- Cache-Oblivious Model (COM)
- Scanning
 - Ordinary array
- Searching
 - Height Partitioning Tree
- Sorting
 - K-funnel
What is cache-obliviousness?

Definition [Prokop:1999]:
An algorithm is cache-oblivious if no program variables dependent on hardware parameters, such as cache size and cache-line length, need to be tuned to minimize the number of cache misses.

What does this mean and why is it interesting?
Memory Hierarchy

Principle of locality:
- Temporal locality
- Spacial locality
External-Memory Model

• Replacement programmed explicitly
• M and B are known

$N =$ Problem size
$M =$ Cache size
$B =$ Block size
Cache-Oblivious Model

- Optimal replacement strategy assumed
- Fully associative
- Tall-Cache $M = \Omega(B^2)$

$N = \text{Problem size}$
$M = \text{Cache size}$
$B = \text{Block size}$
Cache-Oblivious Model

- Is the model realistic?

Optimal replacement strategy: If an algorithm makes T memory transfers on a cache of size M with optimal replacement, then it makes at most $2T$ memory transfers on a cache of size $M/2$ with LRU or FIFO replacement.
Cache-Oblivious Model

Why is the COM appealing?
• Clean
• Multi-level memory hierarchies
• Self-tuning
• Easier to program
Scanning

- Scanning N elements stored in a contiguous segment of memory (array) costs at most $\lceil N/B \rceil + 1$ memory transfers.
Divide and conquer

- Usually we consider $O(1)$ as base case
- In COM we often consider $O(M)$ or $O(B)$
Binary Search – Divide and Conquer

Binary search on a ordinary sorted array incurs $\Theta(\log_2 N - \log_2 B)$ memory transfers.

$T(N) = T(N/2) + O(1)$
Base case: $T(O(B)) = O(1)$

This can be done more efficiently using the Height Partitioning Layout
Cache-Oblivious Search

- Construct a complete binary tree with \(N \) nodes storing the \(N \) elements in search-tree order.
- Store the tree sequentially in memory according to a recursive Height Partitioning Layout.
- Search now done in
 \[2^*(1+(\log_2 N)/(\log_2 B/2)) = 2 + 4\log_B N \] transfers, which is optimal.
Cache-Oblivious Search

Height Partitioning Tree
Sorting

- Memory transfers of M/B-way mergesort in EMM bounded by
 $$\Theta((N/B)\log_{MB}(N/B))$$

- Memory transfers of 2-way mergesort is given by
 $$T(N) = 2T(N/2) + \Theta(N/B)$$
 with solution
 $$T(N) = \Theta(N/B \log_2 N/B)$$

- Can we change \log_2 to \log_{MB}?

- Yes! Using the K-funnel
K-funnel

- Complete binary tree with buffers on edges
- Buffer sizes are defined recursively
- A K-funnel merges K sorted lists of total size K^3 in $O((K^3/B)\log_{M/B}(K^3/B)+K)$ memory transfers
- The K-funnel occupies K^2 space
Funnelsort

1. Split the array into $K = N^{1/3}$ contiguous segments each of size $N/K = N^{2/3}$
2. Recursively sort each segment
3. Apply the K-funnel to merge the sorted segments

Memory transfers are made in 2 and 3 leading to

$$T(N) = N^{1/3}T(N^{2/3}) + O((N/B)\log_{M/B}(N/B) + N^{1/3})$$

with solution $O((N/B)\log_{M/B}(N/B))$
Selected References

