1 Funnel Heap

- Introduced by Brodal et al. [1].
- Based on merging instead of distribution.

References

2 Funnel
3 Structure

\[(k_1, s_1) = (2, 8), \quad (1)\]
\[s_i = s_{i-1}(k_i + 1), \quad \text{and} \quad (2)\]
\[k_i = \lceil s_i^{1/3} \rceil, \quad (3)\]

where \(\lceil x \rceil\) is “\(x\) rounded to the nearest power of 2”.
4 Extract

- Fill A_1 if it is empty.
- Extract from A_1

5 Insert

- Insert element in I.
- If I is full perform sweep.
6 Sweep

Idea: Merge elements, and move them to a higher link.

1. Find first empty S buffer.
2. Create σ_1 and σ_2, and merge them to form σ.
3. Insert elements on path from the root to the empty S buffer.
7 Space Complexity

- In a link i there are k_i S buffers of size s_i.
- By the definition of k and s we know that: $k_i = O(s_i^{1/3})$.
- The space consumption of the S buffers are thus $O(k_i^4) = O(s_i^{4/3})$.
- Since K_i, A_i and B_i are all of size $O(s_i)$, the space in the S buffers dominates the space used for a link i.
- Since s_i and k_i is increasing, the space consumption of a Funnel Heap with i links is dominated by the ith link.
- Since the space consumption of a Funnel Heap with i links is $O(k_i^4)$, and $k_{i+1} = O(k_i^{4/3})$, the worst case space complexity is $O(N^{4/3})$.
8 I/O Complexity

They prove that the amortized I/O complexity of an extract is

$$O \left(\frac{1}{B} \log_{M/B} \left(\frac{N}{B} \right) \right).$$

Which is optimal for cache-oblivious priority queues.