Helsinki, 8 December 2003

Title:
The current truth about heaps

Speaker:
Jyrki Katajainen

Co-workers:
Claus Jensen and Fabio Vitale

This talk is about the heaps we all love. 1
will explain how the heap functions are im-
plemented in the CPH STL program library.
The main contribution of the work done by
my co-workers and myself is an experimental
evaluation of various heap variants proposed
in the computing literature. We have also
done micro-benchmarking which gives some
directions for future research.

T hese slides are available at
http://www.cphstl.dk/.

http://www.diku.dk/~jyrki/
http://www.cphstl.dk/

Oth Scandinavian Workshop on
Algorithm Theory

July 8-10, 2004
Louisiana Museum of Modern Art
Humlebaek, Denmark
http://swat.diku.dk/

Deadline for submission:
February 10, 2004 at noon (GMT)

Notification of authors:
March 23, 2004

Final version due:
April 20, 2004

End of early registration:
May 4, 2004

© Performance Engineering Laboratory

http://swat.diku.dk/

.

File Edit ¥iew Search Go Bookmarks Tasks Help

- a O @ Q (D [http-aweew cphistl ks Gy Search | cfgﬂ

.| 48 Home Metscape Cf Search (@] Shop E3Bookmarks 5 censorliste %, Statistics of cp...

=Mission
IMews
Diowmloads

F Source Code

Code reviews

b Benchmark tool
Fublications

Talks

Confributors

For New Developers

Eelated Links
L iterature
Bur Eeports
Mlailing List
Contact Us
T-shirts

Mission

The Standard Template Library, or STL for short, i5 a liby
algorithins and data structures that has been incorporated
language standard and now ships with all modern C++ col

Inexisting STL implementations many STL components 1
performance, some even outdo most of their hand-crafted
many cases, howewver, there i still room for improvetnent
algorithmic and an implementational level as suggested, f
regearch conducted here at DIE (Ferformance Encineeri

The purpose of this project is:

= to study and analyse existing specifications for and
=TL to determine the best approaches to optimizati

= to design alternative/fenhanced versions of individus
usitg standard algorithmic and performance engines
ard

= to implement and document the new wersions in C+

Those will be the main strands of activity, but the project
exercise in software development using up-to-date method

Last modified Aprl 8 2003 10:15:36 Akl

|

|

. L
ﬂ = & ©F BEW | Document: Done {0.275 sscs) \=TE=|

.

Heap functions in the STL

void
push_heap(position A, position Z, ordering f);

—— A . A at most. logon
comparisons

void
pop_heap(position A, position Z, ordering f);

—— A ., A at most.QIoan
comparisons

void
make_heap(position A, position Z, ordering f);

Effect: @ — A at most Sn
comparisons

void
sort_heap(position A, position Z, ordering f);

., m I
Effect: A i at OSt.n o921
comparisons

How would you do it?

© Performance Engineering Laboratory

Jones 1986

ke

Time for dequeue + enqueue (seconds)

rrrrr T

1.0 10.0 100.0 1,000.0 10,000.0
Queue size

0.000

Operation sequence (hold model):

push ()™ [pop () push)]*
e < pop()

increase the priority of e by —In(drand())
push(e)

Input data:
element size: 4 B; #elements: 12135

Environment:
computer: VAX 11/780 running UNIX (BSD 4.2);
cache: 8 kB: TLB: 64 entries; compiler: Berkeley
Pascal with optimization enabled

© Performance Engineering Laboratory 6

LaMarca & Ladner 1996

: A e b
6000 | Top-Down Splay —o— S
Top-Down Skew -+--
Bottom-Up Splay -f-:
s Traditional Heap =%
§ 5000 f Aligned 4-Heap -4-- _
-
e
]
3
D 4000 : |
- ,Arl
-
0]
joF
n 3000)
0]
—
U
3
= 2000 |
G} e
= e
& o nlives
1000 i
O : : : T * : > S s - 1 I S
1000 10000 100000 el

Queue size in elements

Operation sequence:
Hold model?
#define NOTSORANDNUM(x) (x + RANDNUM())

Input data:
element size: 8 B: #elements: 210223

Environment:
computer: DEC Alphastation 250; processor: Al-
pha 21064A 266 MHz; L1 cache: 8 kB; L2 cache:
direct-mapped, 2 MB, 32 B per line; compiler?:
CcC

© Performance Engineering Laboratory 7

Sanders 1999

I | I :
bottom up binary heap --© --
200 - bottom up aligned 4-ary heap ---X---
sequence heap £

150 | %-'*"*--x
R SEE SR, SRRV PO IROREL o
e___@.,e
100 - ; @,-G"' -
11 poa
g i
c}._'@" “'@-‘—"@::—@ B""'F_:}-‘--E

50 | Betni

(T(deleteMin) + T(insert))/log N [ns]

0 l]] | |] l

1024 4096 16384 65536 218 220 beteped
N

Operation sequence:
[push () pop) push Q1" [pop O push () pop)1V

Input data:
element size: 4 B, drawn randomly; satellite data:
4 B: #elements: 28223

Environment:
computer: Pentium II 300 MHz; compiler g++ -06

© Performance Engineering Laboratory 3

Brengel et al. 1999

Insert/Delete_min time performance of the external queues (in secs)

N [=10°]| radix heap array heap buffer tree B-tree

1 6/24 18/11 56/34 11287/259

5 17/97 74/63 148/309 £66210/1389

10 35/178 353/89 201/882 .

25 85/372 724/295 311/2833 B

50 164/853 1437/645 445 /6085 -

75 246/1416 | 2157/1005 | 569/9880 "

100 325/1957 2888/1408 5 -

150 478/3084 | 4277/2297 * .

200 628/4036 5653/3234 » -

Insert/Delete_min time performance of the internal queues (in secs)

N [«10°]|Fibonacci heap| k-ary heap | pairing heap | radix heap

1 3/32 4/33 3/19 3/11

2 6/73 8/75 6/45 5/27

5 17/208 21/210 14/126 11/71

7.5 172800° /- 32/344 22/207 18/124

10 -/- 43/482 30/291 23/162

20 ol 172800°/- | 172800°/- 172800°* /-
Random/Total I/Os for external queues

N [*10°]] radix heap array heap buffer tree

1 447420 34/720 328/668

5 422 /3550 120/4560 16722721970

10 1124/8620 | 168/9440 | 35993/47297

25 2780/21820 | 570/29520 | 93789/123285

50 7798/56830 | 1288/66160 |190147/249955

75 12466/89370 (2016/102480|286513/376625

100 17736/124740 |2776/139760 *

150 27604/192500 [4216/210080 *

200 38284/211570 [5712/284320 *

Operation sequence:
push()Y /pop()N
Input data:

element size: 4 B, drawn randomly from [0..107];

#-elements: 1-10°-200 - 10°
Environment:

computer: Sparc Ultra 1/143; main memory: 256
MB, 8 kB per page; local disk: 9 GB fastwide
SCSI; logical block size: 64 kB; buffer size: 16
MB

(© Performance Engineering Laboratory

Edelkamp &

Stiegeler 2002

I AN O R L R PR G P
QUICKSORT 3.86 14.59 26.73 39.04 51.47 63.44 75.68 87.89
CLEVER-QUICKSORT 3.56 12.84 23.67 33.16 43.80 | 54.37 64.62 75.08
BOTTOM-UP-HEAPSORT 5.73 13.49 22.60 | 32.05 41.59 51.14 60.62 70.11
MDR-HEAFPSORT 7.14 15.39 24.37 33.82 43.04 52.63 61.87 71.02
WEAK-HEAPSORT 7.15 14.89 23.66 32.82 41.97 | 51.08 | 60.13 69.27
RELAXED-WEAK-HEAPSORT | 8.29 15.96 24.63 33.51 42,32 | 51.33 60.06 68.83
GREEDY-WEAK-HEAPSORT 9.09 16.60 25.24 34.12 | 43.03 | 51.77 60.72 69.78
QUICK-HEAPSORT 6.35 15.89 26.20 36.98 47.59 58.16 69.37 | 79.59
QUICK-WEAK-HEAPSORT 6.06 14.49 23.86 33.49 43.30 52.99 62.85 72.54
CLEVER-HEAPSORT 5.30 14.01 23.66 33.65 43.95 53.79 63.60 73.94
CLEVER-WEAK-HEAPSORT 5.97 13.82 22.83 31.95 41.31 50.40 | 59.58 69.61

Operation sequence:

make (N) [pop()]"

Input data:

element size: 4 B, floating point numbers drawn
randomly; #elements: 10°; ordering: f%(z) = =
and f'(z) = In(f~1(z+1)) for i >0

Environment:

computer: Pentium III 450 MHz; compiler g++ -02

© Performance Engineering Laboratory

10

How would you do it now?

© Performance Engineering Laboratory

11

" programs on Pentium II

Sanders

Execution time per element [in nanoseconds]

Sanders’ programs: Ecmjgz :oo_uo_z

3000

2500

2000

1500

1000

500

2—-ary heap —+—

1000

10000

100000
n

le+06

le+C

Sanders’ programs on Pentium III

Execution time per element [in nanoseconds]

Sanders’ programs on Pentium IlI: %cm:o_z :uo_ugz

2500

2000

1500 -

1000

500

' ' o
2—-ary heap —+—

1000

10000

100000

n

le+06

le+C

Execution time per element [in nanoseconds]

Sanders’ programs on Pentium IV

Sanders’ programs on Pentium [V: %cmsgz :uougz

1600

mlm.J\:mm_o.km._ o T
1400
1200
1000
800
600

400 [

200

100000 le+06
n

1000 10000

Cost of unsigned int operations

initializations instruction unsigned int
p—1
;[ﬂ:;o ali] — n=21022441-47 ns
p«— 617 n =210, 214 7.3-8.9 ns
ali] <—200 ali] — z n f 212 12 ns
T «— 2 n=>2 29 ns

n = 216 ..22262-63 ns

pe—1
Z[%<]_<—2200 z — ali] n =210 2243338 ns
p[T 6107 n =210 2153341 ns
ali <—220 z — ali] n = 216 23 ns
LT n =217, .22245-55 ns
p < 1

;[Z] <—22% r — (ali] < z) n =210 2245358 ns

o
p1

ali] <—2200 r— (In(ali]) < In(z))| n =219, 224580-610ns

Cost of bigint operations

IB<—220

initializations| instruction bigint

p—1

ali] — O ali] — x n =210 221 60-66 ns

T «— 220 n = 222 290 ns
n=20 .22 75-78 ns

p[T 6107 n = 213 117 ns

ate 220 afi] — x n =214 229 ns

T n = 215..220297-318 ns
n =221, ,222748-752 ns

p—1

g[z] <_2200 z — ali] n =210, 2221821 ns

(_

p«— 617 n = 210 212 24 ns

ali] — O . n = 213 83 ns

T — 220 veall]) S 180 ns
n = 215..222230-260 ns

p—1

alil =0 |, (ali] <x)| n=210..22213-16 ns

Other current research

Pointer-based methods:
hopelessly slow
— theoretical computer science

Methods with good amortized bounds:
terrible worst case
— not relevant for us

Methods with few element moves:
bad cache behaviour
— not good for us

External-memory methods:
high constants
— relevant only for very large data sets

Cache-oblivious methods:
huge constants
— theoretical computer science

© Performance Engineering Laboratory 17

Our policy-based framework

template <arity d, typename position, typename ordering>
class heap_policy {
public:

typedef typename
std::iterator_traits<position>::difference_type index;

typedef typename
std::iterator_traits<position>::difference_type level;

typedef typename
std::iterator_traits<position>::value_type element;

template <typename integer>
heap_policy(integer n = 0);

bool is_root(index) const;
bool is_first_child(index) const;
index size() const;
level depth(index) const;
index root() const;
index leftmost_leaf() const;
index last_leaf() const;
index first_child(index) const;
index parent(index) const;
index ancestor(index, level) const;
index top_some_absent(position, index,
const ordering&) const;
index top_all_present(position, index,
const ordering&) const;
void update(position, index, const element&) ;
void erase_last_leaf(position, const orderingk);
void insert_new_leaf (position, const ordering&);

private:

};

index n;

Input data

cheap expensive
move move

cheap

unsigned int bigint
comparison

expensive unsigned int (int, bigint)
comparison In comparison | In comparison

One new old idea: local heaps

© Performance Engineering Laboratory

20

Our solution for sort_heap()

In-place mergesort by Katajainen, Pasanen,
and Teuhola [1996]

Fine-tuning not yet implemented

Almost as fast as quicksort, see CPH STL
Report 2003-2

Our solution for make_heap()

Depth-first heap construction by Bojesen, Kata-
jainen, and Spork [2000]

Almost optimal in all respects

Other work:
less element comparisons
— theoretical computer science

Various approaches for
pop heap()

top-down — many element comparisons
bottom-up — typical case good

move-saving bottom-up — theoretical com-
puter science

binary-search top-down

two-levels-at-a-time top-down

Various approaches for
push_heap()

move-saving top-down — Slow
bottom-up — typical case good
bottom-up with buffering — complicated

binary-search bottom-up

Efficiency of 2-, 3-, 4-ary heaps

Execution time per element [in nanoseconds]

Efficiency of various sorting functions for random integers

1800

1600

1400

1200

1000

800

600

400

SGl::partial_sort() —+—
Bottom-up approach: 3—-ary heap ---x---
Bottom—-up approach: 2—ary heap ---*---
Bottom-up approach: 4-ary heap &~

10000 100000 le+06
n

Efficiency of 2-, 3-, 4-ary heaps

Execution time per element [in nanoseconds]

Efficiency of various sorting functions for random integers using In comparison

16000 ——] ——
Bottom—up approach: 4-ary heap —+—
Bottom—up approach: 3—ary heap ---x---
14000 [SGl:sort() ---*---

Bottom—up approach: 2—-ary heap &

12000

10000

8000

6000

4000

2000

O L R R S S S R | L P T S A SRR A |
1000 10000 100000

n

Efficiency of local heaps

Execution time per element [in nanoseconds]

Efficiency of various sorting functions for random integers

1800

1600

1400 -

1200

1000

800

600

400

SGl::partial_sort() ——
Two—-by-two top—down approach: 1-local heap ---x---
Two—-by-two top—down approach: 5-local heap ------
Two—-by-two top—down approach: 4-local heap - SR

SGl:sort() ----e- -

100000 le+06
n

Efficiency of local heaps

Execution time per element [in nanoseconds]

Efficiency of various sorting functions for random integers using In comparison

14000

12000

10000

8000

6000

4000 ¢

2000 -

Two—-by-two top—down approach: 1-local hea

Two—-by—-two top—down approach: 5-local heap ---*---
Two—-by-two top—down approach: 4-local heap ---*--- o
Two-by-two top—down approach: 2-local heap & = \

1000

10000 100000 1le+06
n

Conclusions

In 40 years — not much progress

At the moment it is not clear how big
the overhead of local heaps is for small
problem sizes.

Some combinations of various approaches
have still to be tested.

Code-tuning of the best approaches is
still to be done.

It takes time to develop fast library rou-
tines.

How does technology influence on the ef-
ficiency of the library routines?

Exercise of the week

How many element comparisons incur the op-
eration sequence

[push() | popO1"™

in the worst case? Or what is the amortized
complexity of each of these operations?

1.5Nlogo, N is an obvious upper bound and
N logo> N an obvious lower bound.

Recall that the operation sequence

make(N) [pop()]™

requires about 1.5Nlogo N element compar-
isons.

	1: Title page
	2: 9th Scandinavian Workshop on Algorithm Theory
	3: The CPH STL
	4: Heap functions in the STL
	5: How would you do it?
	6: Jones 1986
	7: LaMarca & Ladner 1996
	8: Sanders 1999
	9: Brengel et al. 1999
	10: Edelkamp & Stiegeler 2002
	11: How would you do it now?
	12: Sanders' programs on Pentium II
	13: Sanders' programs on Pentium III
	14: Sanders' programs on Pentium IV
	15: Cost of unsigned int operations
	16: Cost of bigint operations
	17: Other current research
	18: Our policy-based framework
	19: Input data
	20: One new old idea: local heaps
	21: Our solution for sortunhbox voidb@x kern .06em vbox {hrule width.3em}heap()
	22: Our solution for makeunhbox voidb@x kern .06em vbox {hrule width.3em}heap()
	23: Various approaches for popunhbox voidb@x kern .06em vbox {hrule width.3em}heap()
	24: Various approaches for pushunhbox voidb@x kern .06em vbox {hrule width.3em}heap()
	25: Efficiency of 2-, 3-, 4-ary heaps
	26: Efficiency of 2-, 3-, 4-ary heaps
	27: Efficiency of local heaps
	28: Efficiency of local heaps
	29: Conclusions
	30: Exercise of the week

