Helsinki, 8 December 2003

Title:

The current truth about heaps

Speaker:

Jyrki Katajainen

Co-workers:

Claus Jensen and Fabio Vitale

This talk is about the heaps we all love. I will explain how the heap functions are implemented in the CPH STL program library. The main contribution of the work done by my co-workers and myself is an experimental evaluation of various heap variants proposed in the computing literature. We have also done micro-benchmarking which gives some directions for future research.

These slides are available at http://www.cphstl.dk/.

9th Scandinavian Workshop on Algorithm Theory

July 8–10, 2004 Louisiana Museum of Modern Art Humlebæk, Denmark

http://swat.diku.dk/

Deadline for submission:

February 10, 2004 at noon (GMT)

Notification of authors:

March 23, 2004

Final version due:

April 20, 2004

End of early registration:

May 4, 2004

Heap functions in the STL

void

 $push_heap$ (position A, position Z, ordering f);

void

 pop_heap (position A, position Z, ordering f);

at most $2 \log_2 n$ comparisons

void

 $make_heap$ (position A, position Z, ordering f);

void

 $sort_heap$ (position A, position Z, ordering f);

at most $n \log_2 n$ comparisons

How would you do it?

Jones 1986

Operation sequence (hold model): $push()^N[pop()push()]^K$ $e \leftarrow pop()$ increase the priority of e by $-\ln(\operatorname{drand}())$ push(e)

Input data:

element size: 4 B; #elements: 1-213.5

Environment:

computer: VAX 11/780 running UNIX (BSD 4.2); cache: 8 kB: TLB: 64 entries; compiler: Berkeley

Pascal with optimization enabled

LaMarca & Ladner 1996

Operation sequence:

Hold model?
#define NOTSORANDNUM(x) (x + RANDNUM())

Input data:

element size: 8 B; #elements: $2^{10}-2^{23}$

Environment:

computer: DEC Alphastation 250; processor: Alpha 21064A 266 MHz; L1 cache: 8 kB; L2 cache: direct-mapped, 2 MB, 32 B per line; compiler?: cc

Sanders 1999

Operation sequence:

 $[push()pop()push()]^N[pop()push()pop()]^N$

Input data:

element size: 4 B, drawn randomly; satellite data:

4 B; #elements: 2^8-2^{23}

Environment:

computer: Pentium II 300 MHz; compiler g++ -06

Brengel et al. 1999

N [*106]	lete_min time p	array heap	buffer tree	B-tree	
1	6/24	18/11	56/34	11287/259	
5	17/97	74/63	148/309		
10		353/89	201/882	66210/1389	
	35/178			and Town I	
25	85/372	724/295	311/2833	-1110	
50	164/853	1437/645	445/6085	-	
75	246/1416	2157/1005	569/9880	Elif Seath	
100	325/1957	2888/1408		•	
150	478/3084	4277/2297	-		
200	628/4036	5653/3234	G. Park. Com		
	Fibonacci heap		pairing heap	radix heap	
1	3/32	4/33	3/19	3/11	
2	6/73	8/75	6/45	5/27	
5	17/208	21/210	14/126	11/71	
7.5	172800*/-	32/344	22/207	18/124	
10	-/-	43/482 30/291		23/162	
20	-/-	172800°/-	172800*/-	172800*/-	
	7 Table 1				
and the same	Random/7	Total I/Os for	external queues		
N [*10 ⁶]	radix heap	array heap	buffer tree	erant by the	
1	44/420	24/720	228/668	21222	
5	422/3550	120/4560	16722/21970		
10	1124/8620	168/9440	35993/47297		
25	2780/21820	570/29520	93789/123285		
50	7798/56830	1288/66160	190147/249955		
75	12466/89370	2016/102480	286513/376625		
100	17736/124740	2776/139760	*		
150	27604/192500	4216/210080	*		

Operation sequence:

 $push()^N/pop()^N$

Input data:

element size: 4 B, drawn randomly from $[0..10^7]$; #elements: $1 \cdot 10^6$ – $200 \cdot 10^6$

Environment:

computer: Sparc Ultra 1/143; main memory: 256 MB, 8 kB per page; local disk: 9 GB fastwide SCSI; logical block size: 64 kB; buffer size: 16 MB

Edelkamp & Stiegeler 2002

A second assumption for the true	f^0	f^1	f^2	f^3	f^4	f^5	f^6	f^7
QUICKSORT	3.86	14.59	26.73	39.04	51.47	63.44	75.68	87.89
CLEVER-QUICKSORT	3.56	12.84	23.67	33.16	43.80	54.37	64.62	75.08
BOTTOM-UP-HEAPSORT	5.73	13.49	22.60	32.05	41.59	51.14	60.62	70.11
MDR-HEAPSORT	7.14	15.39	24.37	33.82	43.04	52.63	61.87	71.02
WEAK-HEAPSORT	7.15	14.89	23.66	32.82	41.97	51.08	60.13	69.27
RELAXED-WEAK-HEAPSORT	8.29	15.96	24.63	33.51	42.32	51.33	60.06	68.83
GREEDY-WEAK-HEAPSORT	9.09	16.60	25.24	34.12	43.03	51.77	60.72	69.78
QUICK-HEAPSORT	6.35	15.89	26.20	36.98	47.59	58.16	69.37	79.59
QUICK-WEAK-HEAPSORT	6.06	14.49	23.86	33.49	43.30	52.99	62.85	72.54
CLEVER-HEAPSORT	5.30	14.01	23.66	33.65	43.95	53.79	63.60	73.94
CLEVER-WEAK-HEAPSORT	5.97	13.82	22.83	31.95	41.31	50.40	59.58	69.61

Operation sequence:

 $make(N)[pop()]^N$

Input data:

element size: 4 B, floating point numbers drawn randomly; #elements: 10^6 ; ordering: $f^0(x) = x$ and $f^i(x) = \ln(f^{i-1}(x+1))$ for i > 0

Environment:

computer: Pentium III 450 MHz; compiler g++ -02

How would you do it now?

Sanders' programs on Pentium II

Sanders' programs on Pentium III

Sanders' programs on Pentium IV

Cost of unsigned int operations

initializations	instruction	unsigned int
$p \leftarrow 1$ $a[i] \leftarrow 0$ $x \leftarrow 2^{20}$	$a[i] \leftarrow x$	$n = 2^{10} \dots 2^{24} 4.1 - 4.7 \text{ ns}$
$p \leftarrow 617$ $a[i] \leftarrow 0$ $x \leftarrow 2^{20}$	$a[i] \leftarrow x$	$n=2^{10} \dots 2^{14} \text{ 7.3-8.9 ns}$ $n=2^{15} 12 \text{ ns}$ $n=2^{16} 29 \text{ ns}$ $n=2^{16} \dots 2^{22} \text{ 62-63 ns}$
$p \leftarrow 1$ $a[i] \leftarrow 0$ $x \leftarrow 2^{20}$	$x \leftarrow a[i]$	$n = 2^{10} \dots 2^{24} 3.3 - 3.8 \text{ ns}$
$p \leftarrow 617$ $a[i] \leftarrow 0$ $x \leftarrow 2^{20}$	$x \leftarrow a[i]$	$n=2^{10} \dots 2^{15} \ 3.3-4.1 \ \text{ns}$ $n=2^{16} \ 23 \ \text{ns}$ $n=2^{17} \dots 2^{22} \ 45-55 \ \text{ns}$
$p \leftarrow 1$ $a[i] \leftarrow 0$ $x \leftarrow 2^{20}$	$r \leftarrow (a[i] < x)$	$n = 2^{10} \dots 2^{24} 5.3 - 5.8 \text{ ns}$
$p \leftarrow 1$ $a[i] \leftarrow 0$ $x \leftarrow 2^{20}$	$r \leftarrow (In(a[i]) < In(x))$	$n = 2^{10} \dots 2^{24} 580 - 610 \text{ns}$

Cost of bigint operations

initializations	instruction	bigint
$p \leftarrow 1$ $a[i] \leftarrow 0$ $x \leftarrow 2^{20}$	$a[i] \leftarrow x$	$n = 2^{10} 2^{21} 60-66 \text{ ns}$ $n = 2^{22}$ 290 ns
$p \leftarrow 617$ $a[i] \leftarrow 0$ $x \leftarrow 2^{20}$	$a[i] \leftarrow x$	$n=2^{10} 2^{12}$ 75-78 ns $n=2^{13}$ 117 ns $n=2^{14}$ 229 ns $n=2^{15} 2^{20}$ 297-318 ns $n=2^{21} 2^{22}$ 748-752 ns
$p \leftarrow 1$ $a[i] \leftarrow 0$ $x \leftarrow 2^{20}$	$x \leftarrow a[i]$	$n=2^{10}\dots 2^{22}\ 18$ —21 ns
$p \leftarrow 617$ $a[i] \leftarrow 0$ $x \leftarrow 2^{20}$	$x \leftarrow a[i]$	$n=2^{10} cdot 2^{12}$ 24 ns $n=2^{13}$ 83 ns $n=2^{14}$ 180 ns $n=2^{15} cdot 2^{22}$ 230–260 ns
$p \leftarrow 1$ $a[i] \leftarrow 0$ $x \leftarrow 2^{20}$	$r \leftarrow (a[i] < x)$	$n = 2^{10} \dots 2^{22} 13 16 \text{ns}$

Other current research

Pointer-based methods:

hopelessly slow

→ theoretical computer science

Methods with good amortized bounds:

terrible worst case

→ not relevant for us

Methods with few element moves:

bad cache behaviour

 \rightarrow not good for us

External-memory methods:

high constants

→ relevant only for very large data sets

Cache-oblivious methods:

huge constants

→ theoretical computer science

Our policy-based framework

```
template <arity d, typename position, typename ordering>
class heap_policy {
public:
  typedef typename
    std::iterator_traits<position>::difference_type index;
  typedef typename
    std::iterator_traits<position>::difference_type level;
  typedef typename
    std::iterator_traits<position>::value_type element;
  template <typename integer>
  heap_policy(integer n = 0);
  bool is_root(index) const;
  bool is_first_child(index) const;
  index size() const;
  level depth(index) const;
  index root() const;
  index leftmost_leaf() const;
  index last_leaf() const;
  index first_child(index) const;
  index parent(index) const;
  index ancestor(index, level) const;
  index top_some_absent(position, index,
    const ordering&) const;
  index top_all_present(position, index,
    const ordering&) const;
  void update(position, index, const element&);
  void erase_last_leaf(position, const ordering&);
  void insert_new_leaf(position, const ordering&);
private:
  index n;
};
```

Input data

	cheap	expensive
	move	move
cheap comparison	unsigned int	bigint
expensive comparison	unsigned int In comparison	(int, bigint) In comparison

One new old idea: local heaps

Our solution for sort_heap()

In-place mergesort by Katajainen, Pasanen, and Teuhola [1996]

Fine-tuning not yet implemented

Almost as fast as quicksort, see CPH STL Report 2003-2

Our solution for make_heap()

Depth-first heap construction by Bojesen, Katajainen, and Spork [2000]

Almost optimal in all respects

Other work:

less element comparisons

→ theoretical computer science

Various approaches for pop_heap()

- top-down → many element comparisons
- bottom-up → typical case good
- move-saving bottom-up → theoretical computer science
- binary-search top-down
- two-levels-at-a-time top-down

Various approaches for push_heap()

- move-saving top-down → slow
- bottom-up \rightarrow typical case good
- bottom-up with buffering → complicated
- binary-search bottom-up

Efficiency of 2-, 3-, 4-ary heaps

Efficiency of 2-, 3-, 4-ary heaps

Efficiency of local heaps

Efficiency of local heaps

Execution time per element [in nanoseconds]

Conclusions

- In 40 years not much progress
- At the moment it is not clear how big the overhead of local heaps is for small problem sizes.
- Some combinations of various approaches have still to be tested.
- Code-tuning of the best approaches is still to be done.
- It takes time to develop fast library routines.
- How does technology influence on the efficiency of the library routines?

Exercise of the week

How many element comparisons incur the operation sequence

$$[push() \mid pop()]^N$$

in the worst case? Or what is the amortized complexity of each of these operations?

 $1.5N \log_2 N$ is an obvious upper bound and $N \log_2 N$ an obvious lower bound.

Recall that the operation sequence

$$make(N)[pop()]^N$$

requires about $1.5N\log_2 N$ element comparisons.