
Towards better usability of component frameworks

Bo Simonsen

Department of Computer Science, University of Copenhagen,
Universitetsparken 1, DK-2100 Copenhagen East, Denmark

bosim@diku.dk

Abstract. The CPH STL is an enhanced version of the STL. During the devel-
opment of the CPH STL we focused on the container part of the STL. Our goal
is to provide several versions of individual STL containers, each providing different
trade-offs and desired properties. We found that maintaining complete implemen-
tations of all variants would become a hazard for the future development of the
library. Therefore, we designed component frameworks, where the concepts of the
containers are factorized into smaller parts and most of them can vary indepen-
dently. Component frameworks give the user an enormous flexibility which allows
he or she to specify the desirable trade-offs and properties. We observed that
flexibility and usability are hard to reconcile because of limitations in the C++ pro-
gramming language. In this work we will study the usability problems, caused by
these limitations, and we will also provide solutions for these problems. The key
problems are that the user has to write a large declaration for using a container,
and a component mismatch is likely to occur, i.e. the user gives incompatible com-
ponents to the framework. Such a component mismatch results in unreadable error
messages and the actual errors can be hard to correct. We solved the problem
of large declarations by extending C++ with named template arguments and we
applied C++ metaprogramming techniques to solve the problem of component mis-
matches. We believe that the solutions to the problems described in this work are
relevant beyond the CPH STL.

Keywords. component frameworks, C++ language features, C++0x, named tem-
plate arguments, template argument propagation, component mismatch.

1. Introduction

Adaptable component frameworks, in context of the STL, were introduced
in our paper on the CPH STL vector implementation [18]. A component
framework is a skeleton of a software component which is to be filled in with
implementation-specific details in the form of policies. A policy [33] is the
generic variant of a strategy used in the strategy design pattern [10, 11].
More details of how policies are integrated in the CPH STL can be found in
[17, 18, 19]1. The result of our work was a component framework for vector,
which gave us a high level of parameterization, by template arguments, such

1 [17] is included in [26].

CPH STL Report 2009-6, July 2009, Revised November 2009

2 Bo Simonsen

that the user can select the desired properties (and trade-offs) of the vector
container. The conceptual view of the vector framework is shown in Figure
1.

vector framework

kernel

encapsulator

iterator

int float bool

rank iterator proxy iterator

dynamic array

value type

hashed array tree

direct encapsulator indirect encapsulator

Figure 1. The conceptual view of the vector framework.

We factorized the vector concept into the following concepts: A kernel
is a minimal implementation of a data structure. For vector this policy
provides the member functions grow, shrink, and access which allow the
framework to adjust the size of the kernel and to access elements stored in the
kernel. We provide several different kernels with different trade-offs which
include space efficiency and worst-case time complexity. An encapsulator is
a storage policy which states how each element should be encapsulated. We
provide three different encapsulators, an encapsulator which stores elements
directly, an encapsulator which stores elements indirectly, and an encap-
sulator which stores elements doubly indirectly. In this context, indirectly
means that the underlying array contains references to objects where each
value is stored. Each encapsulator gives different properties with respect to
referential integrity and strong exception safety. An iterator is an imple-
mentation of a random access iterator which interface is described in the
C++ standard [6]. Because we provide different encapsulators and kernels,
we need different kinds of iterator classes. Currently, we have a rank iterator
and a proxy iterator. The rank iterator is used when elements are stored
directly and the proxy iterator when elements are stored either indirectly or
doubly indirectly. However, in the future more iterator classes may appear,
since the framework is extendable.

Notice that these concepts are generic for most containers. We have also
made a component framework for binary search trees [27]. The significant
concepts in this framework is a balancing policy and a storage policy. The
balancing policy (or the balancer) contains member functions for restoring the
balance of a binary search tree after modifying operations are executed, and

Towards better usability of component frameworks 3

Listing 1. An example of a configuration of the binary search tree framework.

1 typedef cphstl::set<int,
2 std::less<int>,
3 std::allocator<int>,
4 cphstl::tree<int,
5 int,
6 cphstl::unnamed::identity<int>,
7 std::less<int>,
8 std::allocator<int>,
9 cphstl::avl_tree_node<int, true>,

10 cphstl::avl_tree_balancer<
11 cphstl::avl_tree_node<int, true>
12 >
13 >,
14 cphstl::node_iterator<
15 cphstl::avl_tree_node<int, true>,
16 false
17 >,
18 cphstl::node_iterator<
19 cphstl::avl_tree_node<int, true>,
20 true>
21 > C;

the storage policy contains member functions for adjusting and retrieving the
value and the pointers. This work was carried out before we constructed the
vector component framework. At the time when we developed the vector
component framework we observed that the balancing policy was similar to
the kernel concept and the storage policy was similar to the encapsulator
concept.

An important property of the construction of the vector component frame-
work is that the kernels and encapsulators can vary independently and
they are interchangeable. For example, if the user desires a space-efficient
container which provides referential integrity, he or she would configure
the framework with the kernel hashed_array_tree and the encapsulator
indirect_encapsulator. If the user later observes that he or she does not
need referential integrity, he or she should simply change the encapsulator
to direct_encapsulator.

Component frameworks give both developers and users an enormous flexi-
bility, but they do also introduce problems. We found two significant prob-
lems: The user has to give many template arguments for using the frame-
work, and the probability of a component mismatch is large. Such a com-
ponent mismatch results in many lines of error messages produced by the
compiler, where the actual error can be hard to find.

We will justify the claim that component frameworks are hard to use with
an example, which is given in Listing 1. This example shows a configuration
of the binary search tree framework. A configuration is an instance of the
framework assembled with the user-selected policies. The container which is

4 Bo Simonsen

assembled with this configuration is an ordered container set which stores
unique elements. In this configuration the balancing policy is the AVL-tree
balancer [1] (avl_tree_balancer), the storage policy is a space-efficient
node (avl_tree_node, the last template argument determines whether the
node is space efficient or not), and the iterator is a generic iterator class for
containers that are based on nodes (node_iterator). More details about
the binary search tree framework can be found in [27]. More details on the
architecture of the CPH STL can be found in [17, 19].

By analysing the code shown in Listing 1 we deduced the following ob-
servations:

– Several template arguments are given several times, for example, the
type of the value which is int is given 11 times.

– The meaning of each template argument is not clear. For example, it
is not obvious to an inexperienced user what false and true mean in
the context of the iterator class node_iterator.

– The default arguments are not sufficient. Consider the template param-
eter list for a class L = 〈P0, P1, . . . , Pn〉. We assume that all template
parameters have default arguments. If a user wants to override the de-
fault argument for Pn, he or she needs to give all template arguments
because the order of the template arguments matters. This applies to
our current example, if we just want to override the iterator class, we
need to give the whole declaration.

In [18] we propose a partial solution to these problems by introducing
predefined container classes. For predefined container classes we select the
policies in advance such that the user should only give the type of the value
and the type of the allocator as required by the C++ standard. For example,
for vector we provide compact_vector which is realized by a space-efficient
data structure. The predefined container classes cannot be the only way
of using the component framework, simply because we desire the flexibility
obtained by the current construction of the framework. Therefore we should
support both variants of use. These two kinds of use are defined in [18] as
selective use, where the user selects a predefined container class, and as
integrated use where the user builds a component from smaller components
(kernel, encapsulator, and iterator). We need a better way of writing the
declarations for integrated use because of the problems identified earlier.

With these problems in mind, we can specify the requirements for the
future declarations of integrated use: Each template argument should be
given once, the meaning of each template argument should be clear, and
overriding default arguments should not affect other default arguments in
the template parameter list.

1.1 Contributions

The problem of writing proper container declarations is just one problem
related to the use of component frameworks. In this work we will study other

Towards better usability of component frameworks 5

aspects related the use of component frameworks as well. More precisely,
the main contributions of this work are:

– We describe how to implement selective use and how to improve the
interaction between the user and the framework for realizing integrated
use.

– We show how to detect a component mismatch and provide a solution
which produces better error messages when a component mismatch is
detected.

Further contributions of this work are:

– We discuss several elements from the upcoming revision of the C++
standard, which we found useful in the context of program-library de-
velopment.

– We define the template argument propagation idiom and provide some
ideas of its application.

– We provide a complete specification and implementation of our named
template argument language extension such that others can use it.

2. Selective use

In this section we will consider several different approaches of how to imple-
ment selective use. We will consider a C-macro approach, and an approach
based on inheritance. We will also consider several different language-feature
proposals which have been accepted to the upcoming revision of the C++
standard.

We will use the vector component framework as an example in our study
of how to provide selective use. The predefined container classes for the
vector framework are the following:

cphstl::vector<V, A, R, I, J>: The parameterized vector class. The
default template arguments ensure that the container class can be used
as specified in the C++ standard; this container class is standard com-
pliant2 and it should be realized by a dynamic array [8] or a similar
data structure.

cphstl::fast_vector<V, A>: A vector similar to cphstl::vector but
the array is not contracted due to performance considerations. This
implementation is similar to the one provided by GNU libstdc++ [13].

cphstl::safe_vector<V, A>: A vector based on a regular dynamic ar-
ray [8], or a similar data structure, with the safety extensions (strong
exception safety and referential integrity) as described in [18].

cphstl::compact_vector<V, A>: A vector based on the hashed array tree
[30] or a similar data structure. This container must provide a space
overhead bounded by O(

√
n).

2 The current cphstl::vector interface is not standard compliant because of the reference
proxy (described in [18]). The reference proxy should be given as template argument to the
framework, such that the vector framework can be used to produce a standard compliant
vector.

6 Bo Simonsen

The template parameter V is the type of the value and the template param-
eter A is the type of the allocator.

When finding solutions to problems in the area of library development
we have several metrics to measure the quality of our solutions, including
flexibility, maintainability, usability, and code reuse. Regarding the con-
struction of predefined container classes, we are mostly concerned about
code reuse. That is because, currently we have four different predefined
container classes but more may appear in the future. At that time, main-
taining several complete implementations of the vector container interface
may become a hazard for the future development. Therefore we will select
the solution which ensures that the highest amount of code is reused, and
works according to our requirements. We desire that cphstl::vector is the
only complete implementation of the interface specified in the C++ standard.

2.1 C macros

A predefined container class for the vector component framework can be
viewed as an alias of the vector component framework given some template
arguments in advance. The C++ programming language provides most lan-
guage features as we know from the C programming language [20]. That
includes the preprocessor directives that allow the programmer to let the
preprocessor generate code at compile time. These directives are prefixed
by #. One of these directives is define which is used to create an alias (also
known as a macro).

The define directive takes two arguments, an identifier and a replace-
ment text. What happens when the programmer writes the identifier is
that the C preprocessor will substitute the identifier with the replacement
text. The identifier can also have an associated parameter list which allows
the replacement text to contain parameters. When the programmer sup-
plies an identifier with arguments, the parameters in the replacement text
will be substituted with the arguments. We can use the define directive
to create an alias for the predefined container classes. An example where
fast_vector is defined using macros is shown in Listing 2.

This solution comes with some major problems. The first obvious problem
is that each alias needs a unique name. That is because overloading of aliases
depending on their parameter count is not allowed in C-style macros. This
means, if a predefined container class has a parameter list of length n with
default values, we need n different macros with unique names. This fact
makes this solution less attractive. Yet another problem is that macros are
processed by the preprocessor, and in that state the compiler has no abstract
syntax tree. This means that it has no knowledge of namespaces, so it is
not possible to define a macro within the CPH STL namespace. This could
cause conflicts if the user did define a macro with the same name.

Towards better usability of component frameworks 7

Listing 2. Macro-based solution for fast vector.

1 #define fast_vector_(V, A) vector<V, A, vector_framework<V, A,
dynamic_array<V, A, direct_encapsulator<V, A>, true > >,
rank_iterator< vector_framework<V, A, dynamic_array<V, A,
direct_encapsulator<V, A >, true > >, false>, rank_iterator<
vector_framework<V, A, dynamic_array<V, A, direct_encapsulator<V
, A >, true > >, true> >

2 #define fast_vector(V) vector<V, std::allocator<V>, vector_framework
<V, std::allocator<V>, dynamic_array<V, std::allocator<V>,
direct_encapsulator<V, std::allocator<V> >, true > >,
rank_iterator< vector_framework<V, std::allocator<V>,
dynamic_array<V, std::allocator<V>, direct_encapsulator<V, std::
allocator<V> >, true > >, false>, rank_iterator<
vector_framework<V, std::allocator<V>, dynamic_array<V, std::
allocator<V>, direct_encapsulator<V, std::allocator<V> >, true >
>, true> >

Listing 3. Inheritance-based solution for fast vector.

1 namespace cphstl {
2 template <typename V,
3 typename A = std::allocator<V> >
4 class fast_vector : public vector<V, A, vector_framework<V, A,

dynamic_array<V, A, direct_encapsulator<V, A>, true > >,
rank_iterator< vector_framework<V, A, dynamic_array<V, A,
direct_encapsulator<V, A >, true > >, false>, rank_iterator<
vector_framework<V, A, dynamic_array<V, A, direct_encapsulator
<V, A >, true > >, true> > {

5 public:
6 /* constructors and operator= */
7 };
8 }

2.2 Inheritance and template programming

Inheritance and template-based programming can be mixed, such that we
can define a class template which inherits from another class template [33].
This means that we can define cphstl::fast_vector as a class template
which inherits from cphstl::vector. A skeleton of the implementation is
shown in Listing 3. We can still provide the default arguments, such that
the user can give just V and the default argument for A will be used. The
user can also give both arguments without problems.

A problem with this solution is that we need to define all constructors
in each derived class. For this particular example (cphstl::fast_vector)
that fact does not cause any problems, since we are inheriting from the
same class for any permutation of template arguments. A problem will only
appear if the vector container gets more constructors, then all predefined
container classes should be altered. It is not always the case that a class

8 Bo Simonsen

Table 1. The differences between the constructors of the stack container and adaptor
classes.

Container

template <
typename V,
typename A = std::allocator<V>,
typename R = std::list<V, A>

>
class stack_container {
public:

...
explicit stack_container(
A const& = A());

stack_container(
stack_container<V, A, R> const&);

...
};

Adaptor

template <
typename V,
typename C = std::deque<V

>
>
class stack_adaptor {
public:

...
explicit stack_adaptor(
const C& = C());

...
};

inherits from the same class for any permutation of the template arguments,
for instance, the CPH STL implementation of stack does not.

Example 1. The cphstl::stack implementation is adaptive meaning that
if the last template argument is an allocator, cphstl::stack inherits all
members from the container variant of stack, otherwise it inherits all mem-
bers from the adaptor variant of stack. The adaptor variant is described in
the C++ standard and the container variant is a CPH STL extension. We
provide a container variant of stack since the underlying container already
provides iterators, and we observed that our users would prefer that iterators
were available in some cases. 2

The selection of which class cphstl::stack inherits from (as described in
Example 1) can be implemented using C++ metaprogramming techniques.
The problem is that the two classes (the stack adaptor and the stack con-
tainer) do not provide the same constructors which is required in order
to successfully implement cphstl::stack using inheritance, since the con-
structors are not inherited. The code relevant for this observation is shown
in Table 1. We have not found any language features for solving this prob-
lem within the scope of the current C++ standard. To successfully solve this
problem, we would need a language feature which allowed us to explicitly
specify for a subclass that the constructors (in general, all members) should
be inherited.

2.3 Inheriting constructors

The lack of language support for inheriting constructors in C++ turned out
to be a well-known problem. The upcoming revision of the C++ standard, in-
formally denoted C++0x, will include a language feature which allows inher-

Towards better usability of component frameworks 9

itance of constructors. The proposal [24] states that if the using keyword,
parameterized with the name of the base class is present in the declaration
of a subclass, the constructors of that base class are inherited. Example 2
shows how the proposed syntax of the using keyword can be applied.

Example 2. Consider two classes sub_class and base_class. We de-
sire that sub_class inherits all constructors from base_class. With the
language feature described in [24] we can write the following C++ code to
implement this scenario.

1 class base_class;
2

3 class sub_class : public base_class {
4 using base_class::base_class;
5 public:
6 ...
7 };

Notice, that the using keyword can be placed arbitrarily in the class decla-
ration. 2

The appearance of such a language feature will make the predefined con-
tainer classes smaller, but most importantly this language feature provides
us hope that it should be possible to implement the adaptive stack with the
desired behaviour as described in Example 1. In the proposal of the inher-
iting constructors language feature, it is not clear whether it is allowed to
inherit constructors from a class template or a template argument. For our
implementation of the adaptive stack this is crucial. The most recent draft
of the C++0x standard [15] confirms that it should be allowed to inherit con-
structors from a class template or a template argument. This means that
the adaptive stack can be implemented with the desirable behaviour using
inheritance.

2.4 Template aliases

Let us reconsider the implementation of the predefined container classes.
Currently, we can only provide a valid solution using inheritance. In general
we want to avoid inheritance because we have observed that bugs involved
in such programs are hard to find since the polymorphic binding is per-
formed at run time. We prefer compile-time polymorphic binding, since an
error in such programs will usually result in an error message produced by
the compiler, which is easier to find than run-time errors like segmentation
faults. Example 3 partly justifies this claim; it shows one pitfall related to
inheritance in C++, which most programmers may have encountered.

Example 3. Consider two classes A and B. The class B inherits all members
from A. Both classes contain a member function test. The following code
defines the classes and creates an object of B.

1 #include <iostream>
2

3 class A {

10 Bo Simonsen

4 public:
5 void test() {
6 std::cout << "A" << std::endl;
7 }
8 };
9

10 class B : public A {
11 public:
12 void test() {
13 std::cout << "B" << std::endl;
14 }
15 };
16

17 int main() {
18 A* x = new B();
19 x->test();
20 }

When the call x->test() is issued, we expect that B::test() is called,
but it turns out that A::test() is called. This happens since the member
function in A is not defined to be virtual. 2

An interesting language feature proposed for C++0x is called typedef tem-
plates (also known as template aliases). Before we will introduce this lan-
guage feature, we will give some background on C++ generic programming.
A typedef is short for type definition. A typedef is used to create an alias
for a type. It is similar to the define directive, as we discussed earlier.
Typedefs are fundamental in C++ generic programming and especially when
designing STL containers. That is because class members can be types. We
can perform type definitions for all types, also class templates. For exam-
ple, we can create a type definition for an integer vector in the following
way: typedef std::vector<int, std::allocator<int> > int_vector.
Sometimes it can be useful to create an alias for a class template where the
template arguments are not given in advance (see Example 4), as they were
in the previous example.

Example 4. Boost [5] C++ libraries provide a so-called pool allocator
(boost::pool_allocator). A pool allocator [3] maintains an object
pool which is used to serve allocation requests. Furthermore when the
allocator receives a deallocation request, the object is not deallocated,
but it is stored in the object pool. Such an allocator may be a per-
formance improvement for containers which are often updated (elements
are erased and inserted). For convenience, we would desire an alias
where we could write pool_allocated_list<V> to obtain an instance of
std::list<V, boost::pool_allocator<V> >; V denotes the type of the
value. 2

We can implement the proposal in Example 4 using inheritance or using a
typedef template. A typedef template is similar to a typedef but it is allowed
to use template parameters in its declaration such that when the typedef
template is used, the template arguments are given. This language feature

Towards better usability of component frameworks 11

Listing 4. A typedef template for cphstl::fast vector.

1 namespace cphstl {
2 template <typename V, typename A>
3 using fast_vector = vector<V, A, dynamic_array<direct_encapsulator

<V, A>, false>, rank_iterator<dynamic_array<
direct_encapsulator<V, A>, false>, false>, rank_iterator<
dynamic_array<direct_encapsulator<V, A>, false>, true> >;

4 }

was proposed by Sutter [32], and the syntax is the following:

template<L> using A = D;
The elements in this syntax are the following: L the template parameter list,
A the alias, and D the declaration of which the typedef template is an alias
for. The same syntax appears in the draft of the upcoming C++ standard
[15].

To clarify the use of this language feature, we can now specify the typedef
template for pool_allocated_list<V> as described in Example 4. The
declaration looks as follows:

1 template <typename V>
2 using pool_allocated_list = std::list<V, boost::pool_allocator<V> >;

An important observation is that this language feature becomes useful when
implementing the predefined container classes. With inheritance we needed
several lines of code, with typedef templates we need just a few lines. This
is shown in Listing 4 where the full declaration of cphstl::fast_vector is
given.

2.5 Conclusions

From the discussion in this section, we have learned that the language fea-
tures proposed for C++0x ease and improve library development. More
specifically we have learned that the adaptive stack can be implemented
using inheritance with the extension of inheriting constructors. Currently
it cannot be implemented in the desired way, which means that the cur-
rent specification of the C++ programming language is not strong enough
regarding this matter. Furthermore we learned that we can implement the
predefined container classes with just a typedef template instead of a class
declaration.

3. Template argument propagation

In this section we will study how to improve support for integrated use; the
way of use where the user specifies the kernel, encapsulator, and iterator
for realizing the vector container. We observed that the declarations for
integrated use were long and hardly readable. That was because the user had
to give each template argument several times in the worst case, the meaning

12 Bo Simonsen

Propagate V and A Propagate V and A

A

kernel

J
I

A

vector vector framework

A
E

VR

V

K

V

Figure 2. Template argument propagation.

of each template argument was not clear, and the default arguments were
not sufficient. If we could just solve one of these problems, we would achieve
a significant improvement regarding usability. We have found a technique,
based on the regular C++ language, which ensures that the user can give
each template argument once; we can therefore solve one of our usability
problems.

The idea in this technique is to propagate (or forward) each template
argument, which is given to a class template X, to class templates which are
instantiated by X. A simple algorithm for propagating template arguments
is shown in Algorithm 1. The algorithm accepts sets of template arguments
given to each class in a configuration. These sets are denoted Ax for a
class x. In these sets template arguments are just given once, and the
algorithm computes a full set of template arguments for set Ax for all x in
the configuration. The algorithm has several limitations, including that all
template arguments must be unique, i.e. a class template cannot be given
twice with different permutations of types. This fact does not matter, since
the purpose of the algorithm is to show how this mechanism works.

Algorithm 1 propagate(C,A,P)

Require: The class name C. The set Ax containing pairs
〈parameter, argument〉 for a class x. The set Px containing tem-
plate parameters for a class x.

1: for 〈p, a〉 in AC do

2: Aa ← {〈p′, a′〉 | 〈p′, a′〉 ∈ AC ∧ p′ ∈ Pa} ∪ Aa

3: propagate(a, A,P)
4: end for

A concrete example which shows how the template arguments are prop-
agated when this technique is applied for our vector framework is shown
below.

Example 5. Let us consider the vector and vector_framework classes.
The propagating procedure works as follows (also shown in Figure 2):

– The user supplies vector with all template arguments required which

Towards better usability of component frameworks 13

Table 2. A class containing inner classes.

1 class A {
2 public:
3 /* classes */
4 class B {
5 public:
6 void a_member_func() {
7 }
8 };
9 class C {

10 public:
11 typedef int member;
12 void another_member_func() {
13 }
14 };
15

16 /* member function */
17 void test() {
18 (*this).d.test();
19 (*this).b.a_member_func();
20 }

continues in the right column

21 private:
22 /* classes */
23 class D {
24 public:
25 void test() {
26 }
27 }
28

29 /* member data */
30 B b;
31 D d;
32 };
33

34 int main() {
35 A a;
36 A::C c;
37 a.test();
38 c.another_member_func();
39 }

are V, A, R, I, and J.

– The template arguments which are required by vector_framework and
known by vector will automatically be given to vector_framework.
These are V and A.

– The template argument which is not known by vector must be supplied
by the user. This template argument is K.

This procedure can be repeated recursively such that vector_framework

propagates template arguments to the kernel, and the kernel propagates
template arguments to the encapsulator using the same principle. 2

This technique can be widely applied when exercising C++ generic pro-
gramming; we will see that the use of this technique has other applications
as well. Since it is a technique which can be widely applied we have classified
it as an idiom, and named it the template argument propagation idiom. We
will now give some background on the C++ programming language required
for understanding the implementation of this idiom.

3.1 Inner classes

The C++ programming language is very powerful for structuring elements in
a large code base. These elements are functions, variables, and so on. The
basic language features for structuring these elements are structs and classes.

14 Bo Simonsen

Table 3. An inner class template.

1 template <typename P1>
2 class A {
3 public:
4 template <typename P2>
5 class B {
6 public:
7 void test() {
8 P1 p1;
9 P2 p2;

10 ...
11 }
12 };
13 };
14

15 template <typename P1>
16 class C {

continues in the right column

17 public:
18 void test() {
19 b.test();
20 }
21 private:
22 typename P1::template B<P1> b;
23 };
24

25 int main() {
26 A<int>::B<float> b;
27 b.test();
28

29 C<A<int> > c;
30 c.test();
31 }

More advanced language features for structuring elements are namespaces,
which become very useful in, for example, library development. Namespaces
make it possible for the user to use several different libraries within the same
code, for example, the user can use both elements from the CPH STL and
the STL at the same time. A language feature, which is often overlooked, is
the possibility of having inner classes [33] in a class, i.e. classes can contain
other classes.

Let us consider a simple example shown in Table 2. Here, the class A has
three inner classes. The classes B and C are declared public, and the class
D is declared private. The use of inner classes makes it easy to do proper
encapsulation. With these declarations we specified that the classes B and
C can be instantiated outside A but D needs to be instantiated within A (if A
contained friend declarations, the friends could also create instances of D).
The classes contained in A can be accessed like any other member using the
:: infix operator, e.g. C can be accessed using the statement A::C. Accessing
a member in C can be done using A::C::member.

Regarding this language feature, we are mostly concerned if it can be
applied to class templates such that we can have inner class templates in class
templates. This is possible, and in general, there is no difference between
writing regular inner classes and inner class templates. An example of the
use of inner class templates is shown in Table 3. In this example we have a
class template A which consists of an inner class template B. As the reader
can verify by examining this example, the only difference between the use of
inner classes and inner class templates is that we provide template arguments
for inner class templates. The use of inner class templates is similar to the
construction given in Example 6.

Towards better usability of component frameworks 15

Example 6. For most STL containers, in this example vector, we see the
following recurring construction:

1 template <typename V, typename A = std::allocator<int> >
2 class vector {
3 public:
4 ...
5 template <typename I>
6 void insert(I first, I second);
7 };
8

9 int main() {
10 vector<int> v;
11 int a[] = {1,2,3};
12 v.insert(a, a+3);
13 v.insert<int*>(a, a+3);
14 }

The user supplies vector with the template arguments V and A. The template
argument I for the function template insert is deduced from the type of
the iterator which is given as argument. The template argument can also
be given explicitly as shown in the second call to insert. 2

By using this language feature we can create even more complex construc-
tions. Let us consider the class C from the example in Table 3. The class
C accepts a class template containing an inner class template as template
argument; C creates an object of the inner class template and calls a member
function using this object. The declaration of creating the object is more
complex than the declarations that we have already seen. Since the outer
class template is given as template argument, we have to use the template

keyword to access the inner class template (see line 22 in Table 3).

Observation 1. In Table 3, the class C provides the template arguments
for the inner class template (in this example B) of the class template given as
template argument (in this example A). This means that the user just speci-
fies the template arguments for A and C supplies B with template arguments.

2

3.2 The idiom

Observation 1 is the foundation for the template argument propagation id-
iom. The key aspect is that some class template can accept another class
template by its template argument and provide template arguments for this
class, using an inner class as a proxy for the real class. An example is shown
in Listing 5 where we have two classes X and Y. The idea is that the user
should only supply X with template arguments, and then X supplies Y with
the template arguments needed. The class Y can also take template argu-
ments. These template arguments are specified by the user. This is useful
if Y takes template arguments which are not known by X as we described
earlier.

16 Bo Simonsen

Listing 5. General structure of the template argument propagation idiom.

1 class Y {
2 public:
3 template <typename P1, typename P2, ...>
4 class real_class {
5 public:
6 ...
7 };
8

9 };
10

11 template <typename P1, typename P2, ..., typename PY = Y>
12 class X {
13 public:
14 ...
15 typename PY::template real_class<P1, P2, ...> y;
16 };
17

18 int main() {
19 X<int, char, ..., Y> x;
20 ..
21 }

This idiom could be directly applied to ensure that we will only spe-
cify template arguments once when using our frameworks. An example of
how the idiom could be applied is shown in Listing 6. This example is al-
most equivalent to the example shown in Listing 5, where vector is X and
vector_framework is Y. The difference is that vector_framework takes one
template argument which is the kernel; this template argument is not known
by vector. We assume in this example that the kernel is using this idiom
such that the template arguments are propagated.

Every solution to a problem has its price, one may ask, what is the cost
of this solution? In order to propagate all template arguments for every
component in our layered architecture, this idiom should be applied to all
components, which includes container classes, frameworks, kernels, iterators,
and so on. Changing our entire code base would be a very time consuming
task, and the code would become less readable. As earlier stated the use
of this idiom does only solve one of our problems, namely that template
arguments are given once. The two other problems still remain, namely
that the meaning of each template argument was not clear, and overriding
some template arguments meant that the default arguments could no longer
be used. The fact that this solution comes with an expensive price tag and
it does not solve all our problems makes it unattractive. We have found no
way to solve all problems within the scope of the current C++ standard. In
the next section we will consider a solution which solves all three problems,
but this solution is beyond the current C++ standard. But first we will look
into another application of this idiom.

Towards better usability of component frameworks 17

Listing 6. A skeleton of vector and vector framework with the template argument
propagation idiom applied.

1 template <typename K>
2 class vector_framework {
3 public:
4 template <typename V, typename A>
5 class real_class {
6 public:
7 ...
8 };
9 };

10

11 template <typename V, typename A, typename R, typename I, typename J
>

12 class vector {
13 ...
14 private:
15 typename R::template real_class<V, A> r;
16 };
17

18 int main() {
19 vector<int, std::allocator<int>, vector_framework<

hashed_array_tree< ... > >, ... > v;
20 }

3.3 Cyclic template arguments

A recurring problem when exercising C++ generic programming is that a
cyclic dependency of template arguments can appear. Given two classes P

and Q, assume that both classes takes one template argument. Consider the
scenario where P is given to Q and Q is given to P as template arguments.
If the user tries to write a declaration for this scenario, he or she would
end up with an infinite declaration: P< Q< P< ... > > >. Obviously, this
declaration cannot be accepted by the compiler. We call the problem, caused
by this scenario, the problem of cyclic template arguments. We observed that
applying the template argument propagation idiom solves this problem; the
solution is shown in Listing 7 for the current example. We can now rewrite
the infinite declaration to the following finite declaration P<Q>. The example
below describes the situation where we encountered this problem for the first
time.

Example 7. The initial construction [28] for a dynamic array providing it-
erator validity and thereby partly referential integrity (for definition see [18])
in the CPH STL is shown in Figure 3. In this construction each encapsula-
tor stores a pointer to the surrogate. This construction was later refactored
and during this refactoring the surrogate pointer was moved to the iterator.
The motivation of this change was to reduce the space consumption for each
encapsulator by a pointer, i.e. the memory consumption for a vector storing

18 Bo Simonsen

Listing 7. The template argument propagation idiom applied to two classes with a cyclic
dependency by template arguments.

1 class Q {
2 public:
3 template <typename Arg>
4 class real_class {
5 public:
6 ...
7 };
8 };
9

10 template <typename Arg>
11 class P {
12 public:
13 ...
14 typename Arg::template real_class< P< Arg > > y;
15 };
16

17 int main() {
18 P<Q> p;
19 }

iv

Array

Dynamic Array
Surrogate

SurrogateEncapsulator

Iterator

pointer

Surrogate pointer

Figure 3. The initial construction of a dynamic array providing referential integrity.

Towards better usability of component frameworks 19

n elements was reduced by n pointers. Yet another argument for moving
the pointer to the surrogate was that the template arguments became cyclic
within the initial construction: The surrogate class takes the realizator (dy-
namic array) as its template argument, the realizator takes an encapsulator
as a template argument, and the encapsulator takes a surrogate as a tem-
plate argument. Moving the surrogate pointer to the iterator removed this
cyclic dependency. 2

An interesting question one may ask: can we during the design phrase de-
tect whether the problem of cyclic template arguments appear? The answer
to this question is yes; the observation below states under which circum-
stances the problem will occur.

Observation 2. If the relationship between the components is interpreted
as a directed graph (see Figure 3), the problem of cyclic template arguments
exists if there exists a cycle in this graph (represented by the bold edges in
the figure). 2

We learned from Example 7 that the cyclic dependency can be removed
by reorganizing the components. Such a reorganization may, in some cases,
cause reduced flexibility, for example, the surrogate cannot be accepted as
template argument in the framework, without applying the template argu-
ment propagation idiom. We found it acceptable that the surrogate was
explicitly defined in the framework, but in some cases it might be unaccept-
able to explicitly define types. In such cases we have found no other options
than applying the template argument propagation idiom. The problem has
earlier been discussed in [7]. The solution proposed in [7] is denoted rebind-
ing (this concept is also used in allocators) which is similar to the template
argument propagation idiom.

4. The named template argument language extension

Several modern programming languages provide the feature named argu-
ments (also known as keyword arguments). This feature provides a mecha-
nism to call a method where the arguments are prefixed with the name of
the parameter. These programming languages include JavaScript, Python,
C#, and F#. We will study how this works in Python [25] by considering
the code given in Listing 8. The function fun defined in lines 1–2 takes two
arguments; both parameters have default arguments defined. This means
that the function can be called with no arguments (line 4) and the default
arguments will be used. The function can be called with one argument and
the default argument for the last parameter will be used (line 5). Finally
the function can be called with both arguments (line 6). These ways of use
are identical to what is possible in C++.

What is beyond C++ in Listing 8 is that we can supply the arguments
using the name of the parameters. The use of this language feature is shown
in the fourth call (line 7) where the function is called with ptwo = 2. This
means that ptwo in the function is set to 2 and the default argument for

20 Bo Simonsen

Listing 8. The use of keyword arguments in Python.

1 def fun(pone = ’a’, ptwo = 1):
2 print pone, ptwo
3

4 fun() # prints ’a 1’
5 fun(’b’) # prints ’b 1’
6 fun(’b’, 2) # prints ’b 2’
7 fun(ptwo = 2) # prints ’a 2’
8 fun(pone = ’b’) # prints ’b 1’
9 fun(pone = ’b’, ptwo = 2) # prints ’b 2’

pone is used. The remaining calls (lines 8–9) are similar to the calls in lines
5–6. The reason why we study this language feature is that we found it
relevant for C++ templates. When we studied the usability problems, which
we identified earlier, we have just found a solution for one of the problems
(template arguments were given several times). The two remaining problems
which were that the meaning of the template arguments were not clear
and the default arguments were not sufficient if one overrides the default
argument for the last template parameter in the list.

Our hypothesis is that named template arguments will solve these prob-
lems. The idea is that template arguments can be given in a similar way
as shown for function arguments in Python. The fact that the parameter
name can be given as prefix for the argument should make the meaning of the
template argument clear (if the name of the parameter is carefully chosen)
and since the template argument is addressed by its parameter name the
order is not important anymore. Therefore this language extension solves
our problems. To realize such an extension we develop a preprocessor which
takes C++ code mixed with the language extension code and produce C++
code which can be accepted by the compiler. We are not the first to propose
named template arguments in C++ template programming. An earlier at-
tempt [33] has been made to obtain this feature in C++; however this attempt
relies on C++ metaprogramming techniques. Combined with the template
argument propagation idiom this technique may solve all three problems,
but it requires that the whole library is refactored.

Another solution could be to develop a domain-specific language (dis-
cussed in for example [23]) for specifying container declarations. A simple
language is shown in Example 8. This language would partly solve our prob-
lems combined with the template argument propagation idiom. A prepro-
cessor could translate the domain-specific language code embedded in C++
code into pure C++ code. The problem with this language is that the tem-
plate arguments contained in D, R, I and E would not have any description
associated such that the meaning of these parameters would be clear. Then
we should add another feature to the language to provide proper readability.
This fact makes this solution unattractive, since such a language would be
hard to maintain. We have learned this lesson from earlier experiences [29].

Towards better usability of component frameworks 21

Example 8. Consider a domain-specific language realized by the following
regular expression:

L = D ((using R) ∪ ∅) ((, encapsulator E) ∪ ∅) ((, iterator I) ∪ ∅)

Where D is a C++ declaration for a container as defined in the C++ stan-
dard, R is the realizator, E is the encapsulator, and I the iterator class.

2

We have not yet addressed the problem of propagating template argu-
ments in context of the named template argument language extension. We
learned that we should change our entire code base for applying the template
argument propagation idiom. We want to avoid that. Fortunately, there is
a smarter solution. If all template arguments given by the user are consid-
ered to be global template arguments we can automatically propagate the
template arguments. For example, the user supplies vector with the type
of the value V. The template argument V will now be global, so all classes
(all classes in the configuration) contained in vector will know V. Another
argument in favour for named template arguments, besides that it solves
our usability problems, is that it is usable outside the CPH STL. That is
why we classified it as a language extension. If such a language extension
appeared in the C++ programming language, the language would become
stronger for template-based programming. Not just because the code be-
comes more readable but mainly because the default template arguments
would be usable for any template argument that is overridden.

4.1 The language extension

We will start explaining our language extension of named template argu-
ments by an example. This example is shown in Listing 9. In this example,
we declare a container type C. This container is a set which is an ordered
container which stores unique elements. In this example the set is storing
elements of type int, and it is realized using the binary search tree frame-
work. The kernel is an AVL tree [1] and a space-efficient node is used. This
example is equivalent to the first container declaration (Listing 1) we con-
sidered. So for this example, the preprocessor will translate the code given
in Listing 9 to the code given in Listing 1.

The tokens !< and !> are used to enclose the declarations which are part
of the language extension such that our preprocessor can easily recognize the
declarations which it should process. The logic of our language extension is:

– Every argument enclosed by the tokens !< and !> must be a named
argument, i.e. it is prefixed by its parameter. We denote a list of named
arguments enclosed by the tokens !< and !> a block.

– An argument may contain another block of named template arguments
(for example, see the argument for parameter R, line 2 in Listing 9).

– The argument for each parameter is memorized such that if a named
argument is already given, that argument will be used. It is possible to

22 Bo Simonsen

Listing 9. An example of a declaration using named template arguments.

1 typedef cphstl::set!<V=int,
2 R=cphstl::tree!<
3 N=cphstl::avl_tree_node!<packed=true!>,
4 B=cphstl::avl_tree_balancer
5 !>,
6 J=cphstl::node_iterator!<is_const=true!>,
7 I=cphstl::node_iterator!<is_const=false!>
8 !> C;

overwrite these arguments such that, if a named argument X is given,
it can later be overwritten and the overwritten version will be used in
the rest of the declaration.

– If a named argument is not given, and it is not memorized from an ear-
lier declaration, the default arguments, as specified in the declaration
of the class will be used (for example, in Listing 9 the named argument
of A, the allocator, is omitted, here the default argument is used). If
this is not specified either, an error is reported.

Already now we can see the advantages of our language extension: The
meaning of the template arguments becomes clear. For example in the
declaration of node_iterator it is now clear what the Boolean argument
means, because the argument is prefixed by is_const. When is_const

is true, an immutable iterator class is made, and when is_const is false,
a mutable iterator class is made. In our paper on component frameworks
[18, Listing 1] we had problems showing what the Boolean argument meant.
We used an enum to show the meaning. Likewise for the node class. The
Boolean argument determines if the node should be packed (space efficient)
or not; According to the code example, that should be clear now.

Another advantage is that the declaration has been reduced in size, be-
cause each unique template argument is given once. Earlier we used 387
characters to write the declaration. Now we use 206 characters, which is a
reduction of approximately 50%. Another aspect in this reduction is that
only the significant template arguments for each class are shown. For ex-
ample, the significant policies for the framework are the kernel and the en-
capsulator, which are the only template arguments given to the framework.
The user should obtain a better overview of the code by this reduction. The
order partly matters currently. In the example, given in Listing 9, I and
J has been swapped according to the order of the template parameters for
set, i.e. I is given before J. For these particular template arguments it does
not matter, since I and J are not used by other classes given to vector.
But if one desires to move V to the end of the template argument list, it is
not possible in the current implementation.

We will now study how the preprocessor is implemented. It is imple-
mented like a regular compiler with the phases of parsing, code emission,
and so on [2]. However, some of the phases have been omitted, since we will,

Towards better usability of component frameworks 23

〈nta statement 〉 → id !< 〈nta list 〉 !>

〈nta list 〉 → 〈nta list′ 〉 〈nta entry 〉
〈nta list′ 〉 → 〈nta list 〉
| ǫ

〈argument list 〉 → 〈argument list′ 〉 id

〈argument list′ 〉 → 〈argument list 〉
| ǫ

〈nta entry 〉 → id = 〈nta statement 〉
| id = id < 〈argument list 〉 >

| id = id

Figure 4. BNF grammar for the language extension.

for example, not perform type checking since it is done by the underlying
C++ compiler. We will now describe what happens in each phase.

Parsing of class templates: Class templates found in the included files
are parsed and stored in a dictionary. This is needed since the pre-
processor must have knowledge of the default arguments of each class
template, in order to use the default arguments when a template argu-
ment is omitted.

Parsing of named template arguments: Named template argument
expressions are identified and parsed using the grammar specified in
Figure 4. The grammar is specified using the Barcus-Naur Form
(BNF). The result of the parsing is abstract syntax trees of the named
template argument expressions. These trees reflect the structure of the
expressions. An example of such a tree is shown in Figure 5. What is
not shown in the figure is that also namespaces are registered. That
is needed since the same class name can be in several different names-
paces. That is the case too, for the dictionary of class templates.

Code emission: Using the dictionary of class templates and the abstract
syntax tree, the resulting C++ code is emitted. When traversing the
abstract syntax tree and the list of class templates a dictionary of global
template arguments is maintained. Such that when, for example, V is
found its argument is registered in the global dictionary. The pseudo
code for the emission procedure can be found in Listing 10.

4.2 Details

We will now give some more details regarding the implementation of the pre-
processor. We will first consider the grammar given in Figure 4. The most
interesting element in the grammar is 〈nta entry〉. For a named template
argument declaration: C !< P = .. !>, P can be the following:

24 Bo Simonsen

vector

I=proxy_iterator J=proxy_iterator R=vector_framework V=int

is_const=false is_const=true K=hashed_array_tree

E=doubly_indirect_encapsulator

Figure 5. The abstract syntax tree for a simple vector declaration.

Listing 10. Python pseudo code for the code emission procedure.

1 # REQURE: ’ast’ the abstract syntax tree, ’gd’ the global dictionary
2 # containing the named arguments, ’ct’ the dictionary of class
3 # templates.
4

5 def emit_code(class_name, parameter_dict):
6 for (parameter, default_argument) in ct[class_name]:
7 if parameter_dict.has_key(parameter):
8 (class_name, arguments) = parameter_dict[parameter]
9

10 if arguments != {}:
11 # This is a nested statement, i.e. !< !>
12 ret = emit_code(class_name, arguments)
13 register_and_emit(ret)
14 elif ct.has_key(class_name):
15 # The user just gave the class name, we need to expand the
16 # declaration by either ct or gd
17 ret = emit_code(class_name, {})
18 register_and_emit(ret)
19 else:
20 # simply use the class_name.
21 elif gd.has_key(parameter):
22 # use gd[parameter], since parameter is already given.
23 else:
24 # use the default arguments for this parameter.
25 ret = emit_code(default_argument[0], default_argument[1])
26 register_and_emit(ret)
27

28 emit_code(ast[0], ast[ast[0]])

Towards better usability of component frameworks 25

– P can be a new named template argument declaration such that we can
write C !< P = C2 !< ... !> !>.

– P can be an instantiation of a class template C !< P = C3<...> !>.
The argument of parameter P is untouched.

– P can be a class name i.e. C !< P = C4 !>. This expression is similar
to C4 !< !>, such that the global dictionary and the default arguments
will be used to find appropriate template arguments for C4.

The process of emitting the code, shown in Listing 10, is so complex that
it deserves some more explanation. Since the job of our preprocessor is to
generate the full declaration of template arguments, we start by traversing
the dictionary of class templates. Each entry in the dictionary contains a
list of parameters and their default arguments. Within this traversal there
are three different cases:

Case 1 is executed if the user supplied the argument for the current pa-
rameter (the user supplied arguments are kept in parameter_dict).
This case has three different cases which are derived of 〈 nta entry 〉 as
we described above.

Case 2 is executed if the user did not supply this argument and the argu-
ment is already known, i.e. it is already registered in the global dic-
tionary. In this case we will use the argument obtained from the global
dictionary.

Case 3 is executed if neither of the two first cases are executed. In this
case we will use the default argument. If the default argument is non-
existing an error is reported to the user.

4.3 More examples

We will now consider some more examples on the use of this language ex-
tension to better understand its novelty.

Example 9. Figure 5 shows a declaration of a vector storing elements of
type int. The vector container is realized by the vector framework, where
the kernel is a hashed array tree and the encapsulator stores elements doubly
indirectly. The iterator used in this setting is the proxy_iterator. The
declaration using named template arguments is the following:

1 cphstl::vector!<V=int,
2 R=cphstl::vector_framework!<
3 K=cphstl::hashed_array_tree!<
4 E=cphstl::doubly_indirect_encapsulator
5 !>
6 !>,
7 I=cphstl::proxy_iterator!<is_const=false!>,
8 J=cphstl::proxy_iterator!<is_const=true!>
9 !> vec;

2

Example 10. The associative container map stores keys of type K. Each key
is associated with a value of type V. In this example we will consider a map

26 Bo Simonsen

container realized by the binary search tree framework, where the kernel is
an AA-tree. The iterator used is the generic iterator for data structures
based on nodes node_iterator.

1 cphstl::map!<K=char,
2 V=int,
3 A=std::allocator<std::pair<char, int> >,
4 R=cphstl::tree!<
5 V=std::pair<char, int>,
6 F=cphstl::unnamed::key_extractor,
7 N=cphstl::aa_tree_node,
8 B=cphstl::aa_tree_balancer
9 !>,

10 I=cphstl::node_iterator!<is_const=false!>,
11 J=cphstl::node_iterator!<is_const=true!>
12 !> mc;

Notice that V is overwritten, since the type of the value stored in the
tree is the pair of 〈K, V〉. The keys are retrieved using the class template
key_extractor which represents the function F : 〈K, V〉 → K. The C++

standard requires that K and V are given separately to map. 2

4.4 Reflection

This solution also comes with disadvantages. Usually the name of the tem-
plate parameter has no meaning in the context of the interface. With this
language extension this fact is no longer true. Now, the library developer
needs to carefully select the names for each template parameter and he or
she needs to consider which template arguments should be propagated. The
library developer also needs to think of possible conflicts regarding template
parameters, for example, maybe template parameter V has a meaning in
one class and in another class it has a different meaning. This problem be-
comes obvious when using the map container and the search tree framework
together, see Example 10.

Our language extension allows us to overwrite a template argument which
is already given, but the feature should be used with caution since a type er-
ror can occur if an argument is overwritten and the later declaration expects
the previous version of the argument. To get the code given in Example 10
working, it has been necessary to overwrite the argument V. It works since
the argument V given to map is not used further on by classes given as argu-
ments. Let us consider the following scenario: We add template parameter
at the end of the template parameter list for map. The class, which is used
as argument to this parameter, requires the argument V which is given to
map. This scenario will cause a compile-time error since V was overwritten.

The obvious solution to this problem is to rename either the parameter V
defined in map or the parameter V defined in the binary search tree frame-
work. If the parameter V defined in the search-tree framework is changed,
the node class also needs to be changed, in order to propagate the template
argument. Since we have several node classes, the easiest solution would

Towards better usability of component frameworks 27

be to change the parameter defined in map, since no changes to other class
templates are required.

Another solution is to introduce local template arguments, which are tem-
plate arguments that are not propagated. In our current example, V should
be a local template argument. Since the argument of V is not propagated we
need to give the argument of V to all classes which take V as their template
argument. In the scope of our example, we only need to give V to the node
class, since the other classes obtain the type of the value from the node class.

A third solution is to introduce sticky template arguments, which are
template arguments that are propagated but changes to them will not be
propagated. This mechanism is similar to the call-by-value principle which
we know from imperative programming, where a function is called by copies
of the arguments such that any change to the arguments (which become
local variables) is not propagated. In our current example, this mechanism
would propagate V to the search-tree framework where it is overwritten but
within the scope of map it is not overwritten. We will leave the decision of
which solution would be the most appropriate as future work.

5. Framework configuration

Another disadvantage of component frameworks, which we have not dis-
cussed yet, is the poor error messages that will occur if the wrong com-
ponents are given to the framework. During the development of the CPH
STL architecture [17, 19], we decided to decouple the iterators from the
containers. Later, we found this decoupling useful in the construction of the
vector component framework. In the vector framework we have two differ-
ent iterator classes which are the proxy iterator and the rank iterator. The
rank iterator is used for a vector where the elements are stored directly in
the array, and the proxy iterator is used for a vector where the elements are
stored indirectly, i.e. in objects of which the array contains references to [18].
Whether the elements are stored directly depends of which encapsulator is
given to the framework.

By decoupling the iterator we created the possibility of a com-
ponent mismatch, since there is a relationship: When either
doubly_indirect_encapsulator or indirect_encapsulator is given to
the framework as encapsulator, proxy_iterator must also be given to the
framework as iterator class. When direct_encapsulator is given to the
framework as encapsulator, rank_iterator must also be given to the frame-
work as iterator class. If the user tries to use the framework with an encap-
sulator which does not fit the iterator class, the user will get several screen
lengths of error messages, and these error messages are not useful at all for
finding the actual error. The compiler will typically write errors which re-
late to missing members or incorrect types. What we really need is a simple
message which states that the iterator class does not fit the encapsulator
class.

28 Bo Simonsen

Immutable iterator

Mutable iterator

Realizator

Allocator type

Value type

Allocator type

Kernel

Value type

Encapsulator

Allocator type

Value type

Allocator type

Value type

Realizator

is const

Encapsulator

Realizator

is const

Encapsulator

rank iterator

rank iterator

std::allocator

int

direct encapsulator

vector

dynamic array

vector framework

(J)

(I)

(V)

(A)

(R)

false

(E)

(R)

true

(E)

(R)

(V)

(A)

(A)

(A)

(V)

(V)

(E)

(K)

Figure 6. A configuration graph.

5.1 Formalization

A configuration of the framework results in a configuration graph; an example
of such a graph is shown in Figure 6. A graph is formally defined by the
tuple: G := 〈V, E〉, where V is the set of vertices and E is the set of edges.
To avoid a component mismatch, we have extended the graph definition for
a configuration graph with constraints. This graph is formalized with the
following definition:

Definition 1. A configuration graph is a directed graph defined by the fol-
lowing triplet G := 〈V, E , Γ〉, where V is the set of vertices (classes involved in
the configuration), E is the set of edges (the relationship between the classes
by template arguments), and Γ the set of allowed edges in G.

The set of edges E in an ordinary graphs contains pairs of vertices 〈vs, ve〉,
where vs is the starting vertex and ve is the ending vertex. This is not
sufficient for us since a class can be given to a class template several times,
but the template parameter will differ. Therefore each edge needs to have

Towards better usability of component frameworks 29

the template parameter associated as a label.

Definition 2. Each edge e ∈ E is defined by a triplet 〈vs, ve, p〉 The element
p is the name of the template parameter in the class vs of which ve is given
to.

Now, we have defined the configuration graph. But we have not defined
how we can verify that a graph is correct. Trivially, this can be done as
described in Proposition 1.

Proposition 1. If Γ contains all allowable edges in G and E ⊆ Γ, no com-
ponent mismatch can occur.

We want this invariant to be checked at compile time. If the invariant
is not maintained, the compiler should provide a decent error message. We
will in the following subsections consider different methods for verifying that
the invariant described in Proposition 1 is maintained.

5.2 Concepts

The most significant contribution, proposed to C++0x, is C++ concepts. In
the traditional form, polymorphism is obtained by creating a base class
containing the desired interface. The interface consists of member functions
which are defined as pure virtual member functions. A pure virtual member
function is a member function, defined in a base class, which each subclass
must implement. In the example below, we show how this language feature
works.

Example 11. Consider the following C++ program:

1 #include <iostream>
2

3 class BaseClass {
4 public:
5 virtual void a_member() = 0;
6

7 };
8

9 class SubClass : public BaseClass {
10 public:
11 void another_member() {
12 std::cout << "Test" << std::endl;
13 }
14 };
15

16 int main() {
17 SubClass s;
18 }

The member function a_member in BaseClass is declared to be a pure virtual
member function. The subclass SubClass does not implement this member
function which results in the following error message (generated using gcc
4.3.2):

1 test-virtual.c++: In function ’int main()’:

30 Bo Simonsen

2 test-virtual.c++:17: error: cannot declare variable ’s’ to be of
abstract type ’SubClass’

3 test-virtual.c++:9: note: because the following virtual functions
are pure within ’SubClass’:

4 test-virtual.c++:5: note: virtual void BaseClass::a_member()

These error messages are hardly understandable, but at least they give a
hint of where to look for the error. 2

Until now, we had no language features which allowed us to create a equiv-
alent restriction for types in a template-based setting. More precisely, we
cannot specify restrictions of the types that can be given to class templates
as template arguments. C++ concepts provide such a language feature. With
C++ concepts the programmer can specify concepts and concept maps. A
concept is a set of constraints (members, axioms) one or more types must
satisfy. After a concept is defined the programmer can use the concept by
specifying that the argument of some template parameter, in a class or func-
tion template, should satisfy the concept. A concept map is used to make
types which do not satisfy a concept, satisfy the concept by defining a map-
ping. Example 12 gives more details of how concepts are applied. The main
reason for introducing concepts is to provide better error messages when an
incompatible type is given as template argument to a class template. As we
discussed earlier such a mismatch would produce several screen lengths of
error messages by a contemporary compiler. With C++ concepts the com-
piler would simply write that the type given as template argument does not
satisfy the required concept.

Example 12. Let us consider the function template min. Given two argu-
ments of the same type, this function template returns the argument with
the smallest value. This function template is part of the C++ standard li-
brary. Let us consider the scenario where min is called with a type which
does not provide operator<(...). This will cause an error, and the error
messages produced by the compiler may not be helpful. With the declara-
tion defined below using concepts, the compiler will simply write that the
type T does not satisfy the concept LessThanComparable.

1 auto concept LessThanComparable<typename T> {
2 bool operator<(T, T);
3 }
4

5 template <LessThanComparable T>
6 void min(T const& v1, T const& v2) {
7 if(v1 < v2) {
8 return v1;
9 }

10 return v2;
11 }

2

C++ concepts are more than just verifying that a type satisfies a speci-
fied interface. A new way of overloading, concept-based overloading, is

Towards better usability of component frameworks 31

possible, which is more elegant than, for example, tag dispatching. We
briefly discussed this issue in the paper on component frameworks [18]. The
idea in concept-based overloading is that several function templates can
be defined with the same parameters and return type. The difference be-
tween these function templates is in the concepts which the input types
should match. For example, we can have two versions of min, one using
LessThanComparable and one using GreaterThanComparable. Concepts
are described in depth in [14]. According to our formal definition of con-
figuration graph verification, concept checking can be performed using the
definition below:

Definition 3. Given V and E, we generate the set Γ using the following
expression: Γ := {〈vs, ve, p〉 | 〈vs, ve, p〉 ∈ E ∧Φ(vs, ve, p) = true}. Φ returns
true if there exists a concept for parameter p in vs and it is satisfied by ve.

In July 2009 the C++ standards committee decided to remove concepts
from the C++0x specification [31]. This means that we need to wait for the
next C++ standard to appear to get tools for solving the problems of com-
ponent mismatches. Before this decision we had doubts [18] that concepts
could solve our problems completely. We questioned whether concepts are
strong enough to solve the problems encountered in library development.
Consider two algorithms, encapsulated in functors, with the same interface.
The behaviour of these algorithms is different, the first algorithm solves
problem X and the second algorithm solves problem Y. These functors are
likely to be given to class templates as template argument. Let us consider
the scenario where the incompatible functor is given to a class template.
A run-time error may occur or even worse a semantic error, meaning that
the program does not behave as desired. Such a semantic error is usually
harder to find than a run-time error. Such a problem is shown in Example
13. With the current specification of concepts, we do not have an obvious
way of performing a check at compile time which avoids this scenario. In
context of our formal definition, this means that the set Γ may contain edges
which are not allowed in a logical sense, since the set is constructed by the
interfaces.

Example 13. Consider the algorithms random_shuffle and sort encap-
sulated in functors. These algorithms are defined in the C++ standard. The
interface of these algorithms is the same:

1 template <RandomAccessIterator I>
2 void sort(I first, I last);
3 template <RandomAccessIterator I>
4 void random_shuffle(I first, I last);

Clearly the algorithms are designed to solve two different tasks, sort sorts
a sequence enclosed by the given iterators and random_shuffle gives a
random permutation of the sequence enclosed by the two iterators. Let us
consider the scenario where random_shuffle is given to a class template
X as template argument. This class template expects that sort is given
as template argument. After the functor is invoked, the class template X

32 Bo Simonsen

performs binary search. Since the sequence is not sorted, no elements are
likely to be found. This means that the program will probably not perform
the right computation and the output produced by the program will be
incorrect. Such an error can be hard to find in a complicated system with a
large configuration graph. 2

Techniques for contract programming could be used to avoid the scenario
given in Example 13. For example, the D programming language proposes
that a function should consist of three blocks in, out, and body [9]. All
preconditions are put in the in block and all postconditions are put in
the out block, and the functionality of the function is put in the body

block. Such a contract for a function can be implemented without language
features; one should simply put the preconditions at the beginning of the
function and the postconditions in the end of the function. However, having
the pre- and postconditions in the declaration of the function makes them
clearer and idiomatic. Techniques for contract programming might solve
some of our problems, but to determine whether the pre- and postconditions
are true might give a performance overhead, since pre- and postconditions
are evaluated at run time.

Example 14. A version of the class template X from Example 13, which
verifies the post condition of the call to the functor, is shown below:

1 template <typename C, typename F>
2 class X {
3 public:
4 bool member(C const& c, C::value_type* es, std::size_t

number_of_es) {
5 F f;
6 f(c.begin(), c.end());
7 /* check post condition of the call to f */
8 assert(std::is_sorted(c.begin(), c.end());
9 for(int i=0; i < number_of_es; ++i) {

10 if(!std::binary_search(c.begin(), c.end(), es[i])) {
11 return false;
12 }
13 }
14 return true;
15 }
16 };

Notice that we use Θ(n) worst-case time (for a container c storing n elem-
ents) to verify that the post condition is valid. 2

Since concepts will not appear in the C++0x standard, we need to con-
sider alternatives for specifying the relationship between our components
(specifically which components can be accepted by our frameworks and con-
tainers), such that we can provide decent error messages. We know that
the C++ standard is revised every fifth year, therefore it would take at least
five years for concepts to appear in the C++ standard. We believe that com-
ponent frameworks will not gain widespread acceptance unless we solve the
problems related to their use.

Towards better usability of component frameworks 33

rank iterator

proxy iterator

rank

proxy

indirect encapsulator

doubly

indirect encapsulator

direct encapsulator

J K

Figure 7. A family graph.

One alternative, which can be used as a substitute for C++ concepts, is
the Boost concept checking library [4]. This library provides a functionality
similar to C++ concepts, but it is implemented using C macros. The con-
cepts are defined as regular classes (or structs), and in each class there are
several assertions (by the macro BOOST_CONCEPT_ASSERT), which are similar
to regular assertions (assert from the C standard library), just for concept
classes. The macro BOOST_CONCEPT_REQUIRES is similar to the assertion
macro, but it is used for function templates. The last significant macro is
BOOST_CONCEPT_USAGE where it is possible to specify some desired proper-
ties of the types involved in the concepts (for example, copy construction
and assignment).

On the Boost concept checking library homepage [4], several examples
show that the error messages produced by the BOOST concept checking
library are much better (and shorter) than the error messages which would
be produced by the compiler (without any concept checking). However,
the concept checking library still produces several lines of error messages,
but what we desire is a simple one line error message which tells the user
what the problem is. For example if direct_encapsulator is given to
proxy_iterator, the compiler should just stop compilation with an error
message, saying that the encapsulator provided does not fit the iterator. In
other parts of the library the Boost concept checking mechanism may be
useful, for example, to verify that the types, given to generic algorithms,
satisfy some requirements.

5.3 Component families

A simple approach to perform the check whether an iterator fits an encapsu-
lator is to define a component family. The idea of component families is that
we have two finite sets of components; the first set (denoted J) represents
classes that accept one or more classes drawn from the second set (denoted

34 Bo Simonsen

K). The family is a relation of which classes in J can accept classes in K.
Given j ∈ J and k ∈ K we want to check if there is a connection between j

and k.
We can perform such a check at compile time using C++ metaprogram-

ming, but how can we report an error at compile time? C++0x provides
static assertions (or compile-time assertions) [21, 15], which are similar to
assert from the C standard library; the difference is that the static asser-
tions are evaluated at compile time. The built-in function static_assert

takes two arguments, the condition which should evaluate to true, and an
error message. The condition must be written such that it can be evaluated
at compile time. Fortunately, static_assert is available in gcc 4.3 and
4.4 [12] (by compiler option -std=c++0x), so we can already now test the
code. It has been possible to create a mechanism similar to static assertions
before (see, for example, [22, 16]), however there has been no way to pro-
vide a user-defined error message which is readable, i.e. a plain text string
is printed. This is the significant improvement in C++0x static assertions.

Let us reconsider the problem of verifying that an encapsulator fits an
iterator. In Figure 7, a component family graph is shown. As illustrated in
the figure, we create two families which we call rank and proxy; these fam-
ilies have relations between iterators and encapsulators. The set of iterator
classes is represented as the set J and the set of encapsulators is represented
as the set K. According to our formal definition of our configuration graph,
we need to consider, how to construct Γf ⊆ Γ.

Definition 4. Given V and E, we generate the set Γf using the following
expression: Γf := {〈vs, ve, p〉 | 〈vs, ve, p〉 ∈ E∧vs ∈ J∧ve ∈ K∧Φf(〈vs, ve〉) =
true}. The function Φf returns true if there exists a connection between j

and k by the family relation f.

The observant reader may question, why we need families. We could just
implement a mechanism which specified and verified the set Γ (as defined
in Proposition 1). If we did so, elements in J were directly connected to
elements in K. To justify the need of families, let us take a look at Figure 7.
In the set J there is a one-to-one correspondence to a family. However, in
the future there might be a many-to-one correspondence, since it is highly
relevant that several iterator classes can occur for each family. It is also
possible that other components (which are not iterators) can be a part of
J . Consider a kernel which only allows direct encapsulation.

For the approach without families, the developer of a kernel would need
to declare the specific encapsulators that could be accepted by the kernel.
If more encapsulators would come, the declaration would require changes.
With the family approach, the new encapsulators should just be made mem-
ber of the appropriate family. Since we allow our users to create there own
components, including encapsulators, the family approach is preferable. To
implement component families we would need six basic operations:

make-family(f): Creates an empty family f with no connections.

addK(c): Adds a class c to the set K.

Towards better usability of component frameworks 35

addJ (c, p): Adds a class c to the set J and stores template parameter p.

connectJ (j, f): Connects j ∈ J to f .

connectK(f, k): Connects f to k ∈ K.

connection-exists(f, j, k): Calls Φf(〈j, k〉).
We have implemented these operations in C++ for the family graph given in
Figure 7. The implementation is not directly equivalent to the operations
described above. But all together they make it possible to verify that a part
of the configuration graph is correct.

We have decided to use C macros for the implementation, since the check
should be performed at compile time, we have no other options since we
desire a small and readable declaration for each operation. The macros are
shown in Listing 11 (lines 1–16). We will now discuss the implementation
of each macro.

NEW_ENCAPSULATOR_FAMILY(f): implements the operation
make-family(f) by generating a general version of a class tem-
plate named f classes. This class template keeps a constant named
positive which value is set to zero.

JOIN_ENCAPSULATOR_FAMILY(f, e): implements the operations addK(c)
and connectK(f, k). This is implemented by partial specializing the
class template f classes for the encapsulator e given as argument to
the macro. In this specialization, the positive constant is set to one.

IS_ENCAPSULATOR_IN_FAMILY(e, f): implements the operations
addJ (c, p), connectJ (j, f), and connection-exists(f, j, k).
Because of simplicity we do not maintain the set J . When this
macro is used, the static assertion is generated. The constraint of this
assertion is that the class template f classes, given the encapsulator
e as template argument, provides a constant positive of which value
is one.

The declarations, which realize the families given in Figure 7, are shown in
Listing 11 lines 18–31.

Some STL components are classified, for example, iterators have a tag
such that the generic algorithms and other function templates can provide
several different versions, typically one for random-access iterators and one
for bidirectional iterators (see, for example, advance). The family approach
is similar; we could inside each encapsulator define a type which stated the
family of the encapsulator. A problem is likely to occur: if an encapsulator
does not provide the required type, the compiler will give an error instead of
printing the error message given by the static assertion. This problem could
be solved by applying the SFINAE principle [33]. In general, we wanted to
avoid this principle since the code becomes less readable. We used partial
specializations to avoid a type error, since if an encapsulator is not in the
required family, the general version will be used, and the static assertion will
fail. Otherwise one of the specializations is used, and the invariant given by
the assertion will be fulfilled.

36 Bo Simonsen

Listing 11. Declarations of component families.

1 #define NEW_ENCAPSULATOR_FAMILY(f) template <typename V, typename A,
typename E> \

2 class f##_classes { \
3 public: \
4 enum {positive = 0}; \
5 };
6

7 #define JOIN_ENCAPSULATOR_FAMILY(f, e) template <typename V,
typename A> \

8 class f##_classes< V, A, e <V, A> > { \
9 public: \

10 enum {positive = 1}; \
11 };
12

13 #define IS_ENCAPSULATOR_IN_FAMILY(e, f) static_assert(\
14 f##_classes<typename e::value_type, typename e::allocator_type, e

>::positive == 1, \
15 "Encapsulator " #e " is not in family _" #f "_" \
16);
17

18 namespace cphstl {
19 NEW_ENCAPSULATOR_FAMILY(proxy)
20 NEW_ENCAPSULATOR_FAMILY(rank)
21 JOIN_ENCAPSULATOR_FAMILY(proxy, doubly_indirect_encapsulator)
22 JOIN_ENCAPSULATOR_FAMILY(proxy, indirect_encapsulator)
23 JOIN_ENCAPSULATOR_FAMILY(rank, direct_encapsulator)
24 }
25

26 template <typename R, typename is_const = false, typename E =
typename R::encapsulator_type>

27 class proxy_iterator {
28 IS_ENCAPSULATOR_IN_FAMILY(E, proxy)
29 public:
30 ...
31 };

Listing 12. An example error message using component families.

1 /home/bo/CPHSTL/Source/Iterator/Code/proxy-iterator.h++: In
instantiation of ’cphstl::proxy_iterator<cphstl::
vector_framework<int, std::allocator<int>, cphstl::dynamic_array
<int, std::allocator<int>, cphstl::direct_encapsulator<int, std
::allocator<int> >, false> >, false, cphstl::direct_encapsulator
<int, std::allocator<int> > >’:

2 use-test.c++:41: instantiated from here
3 /home/bo/CPHSTL/Source/Iterator/Code/proxy-iterator.h++:32: error:

static assertion failed: "Encapsulator E is not in family
proxy"

Towards better usability of component frameworks 37

Listing 13. A backward-compatible version of IS ENCAPSULATOR IN FAMILY.

1 #ifdef __GXX_EXPERIMENTAL_CXX0X__
2 #define IS_ENCAPSULATOR_IN_FAMILY(e, f) static_assert(...)
3 #else
4 #define IS_ENCAPSULATOR_IN_FAMILY(e, f)
5 #endif

We cannot assume that all our users use a version of gcc which pro-
vides static assertions. Since static assertions may not be available in older
compilers, the user will get an error if he tries to use the vector com-
ponent framework, since the proxy_iterator (as defined in Listing 11)
uses a static assertion. One way of providing backward compatibility is to
maintain a second iterator class which is insecure, in the meaning of no
verification of the components is performed. Because of code-reuse con-
siderations this solution is unattractive. Instead we can take advantage
of the macro __GXX_EXPERIMENTAL_CXX0X__. If gcc is invoked with the
support for C++0x extensions that macro is defined. We can now rewrite
IS_ENCAPSULATOR_IN_FAMILY to be backward compatible, the code is shown
in Listing 13. If gcc is not invoked with support for the C++0x extensions, we
do no verification of whether the components fit together. Instead of doing
no verification, we could use the macro-based static assertions as discussed
in [22, 16].

We have now argued that the component family approach can be used
to verify that the appropriate encapsulator is given to an iterator, i.e. we
computed the set Γf for a family f. Let F denote the set of families involved
in a configuration. The question is how can we compute Γ :=

⋃
f∈F Γf? If

we assume that all types are classified to belong in a certain family, we can
do that. But can we define families for all types? The example below shows
that it may be difficult to maintain a complete set of families for possible
configurations of each framework.

Example 15. Consider an instance of set given the comparator
std::less. We can define a family for the value types which can be ac-
cepted by set if the user defines his or her self-defined types to be mem-
bers of this family. The comparator std::less requires that the types
provide operator<(); hence a new family should be defined and the user-
defined types should be included in this family. Likewise, for the comparator
std::greater and other comparators. 2

From this example, we can deduce that component families are not a
good idea for external components, like the value type. However, for inter-
nal components in the framework, it seems like a good approach to avoid
a component mismatch. For external components, concepts may be the
best approach to detect a component mismatch, since the dependency be-
tween the components is defined by the interfaces, and does not rely on any
predefined relationship.

38 Bo Simonsen

6. Concluding remarks

In this work we studied the disadvantages related to component frameworks
found in [18]. We believe that the result of our work is the following:

– We improved the usability of component frameworks with respect to
integrated use. We found in [17] that just a few studies has been
performed on the use of libraries therefore it would be interesting to
find out (by an empirical study) whether the methods described in this
work will improve usability in practice.

– We hope that this work will lead to acceptance of adaptable component
frameworks in a template-based setting. Other library developers may
have rejected a design, similar to the one given in [18], because they
found the same disadvantages. The existence of the named template
argument language extension makes such a design possible, not just in
theory, but in practice.

– We formalized the component-mismatch problem by applying basic
graph theory. We hope that this point of view can be useful for rea-
soning about, for example, C++ concepts. Also, we hope that we em-
phasized that the existence of concepts in C++ is crucial for detecting a
component mismatch for some kinds of components in the framework.

Software availability

The source code relevant for this study can be found in Appendix, including
the full source code for the preprocessor.

Acknowledgements

I want to thank everybody who contributed to the CPH STL project. Their
work gave us a starting point for designing the vector component framework;
without the existence of the vector component framework, the problems
studied would be unknown to us. Also I want to thank my supervisor
Jyrki Katajainen for his collaboration on the syntax of the named template
argument language extension and for his valuable feedback.

References

[1] G. M. Adel’son-Vel’skĭı and E. M. Landis, An algorithm for the organization of
information, Soviet Mathematics 3, 5 (1962), 1259–1263.

[2] A. W. Appel, Modern Compiler Implementation in C, Cambridge University Press
(1998).

[3] A. Aue, Improving performance with custom pool allocators for STL, Dr. Dobb’s

Journal (2005).
[4] Boost Community, The Boost concept check library, Website accessible at http:

//www.boost.org/doc/libs/1_39_0/libs/concept_check/concept_check.htm

(2000–2007).

Towards better usability of component frameworks 39

[5] Boost Community, Boost C++ libraries, Website accessible at http://www.boost.

org/ (2000–2009).
[6] British Standards Institute, The C++ Standard: Incorporating Technical Corrigendum

1, 2nd Edition, John Wiley and Sons, Ltd. (2003).
[7] Computational Geometry Algorithms Library, CGAL User and Reference Man-

ual, Worldwide Web Document (2009). Available at http://www.cgal.org/Manual/
last/doc_html/cgal_manual/contents.html.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
2nd Edition, The MIT Press (2001).

[9] Digital Mars, Contract programming, Worldwide Web Document. Available at http:
//www.digitalmars.com/d/2.0/dbc.html.

[10] A. Duret-Lutz, T. Géraud, and A. Demaille, Design patterns for generic programming
in C++, Proceedings of the 6th Conference on USENIX Conference on Object-Oriented

Technologies and Systems, The USENIX Association (2001), 189–202.
[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns, Addison-Wesley

Professional (1995).
[12] GNU, Status of experimental C++0x support in GCC 4.4, Worldwide Web Document.

Available at http://gcc.gnu.org/gcc-4.4/cxx0x_status.html.
[13] GNU, libstdc++, Website accessible at http://gcc.gnu.org/onlinedocs/libstdc+

+/ (1999-2008).
[14] D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G. D. Reis, and A. Lumsdaine, Concepts:

Linguistic support for generic programming in C++, SIGPLAN Notices 41, 10 (2006),
291–310.

[15] ISO/NEC, Working draft, standard for programming language C++, Document num-
ber N2914, The C++ Standards Committee (2009).

[16] J. Katajainen, New CPH STL headers <compile-time-assert> and <type>, World-
wide Web Document (2001). Available at http://www.cphstl.dk/Presentation/

3rd-STL-workshop/New-headers/Jyrki-17.12.2001.pdf.
[17] J. Katajainen and B. Simonsen, Applying design patterns to specify the architecture

of a generic program library (2008).
[18] J. Katajainen and B. Simonsen, Adaptable component frameworks: Using vector

from the C++ standard library as an example, Proceedings of the 2009 ACM SIG-

PLAN Workshop on Generic Programming, ACM (2009), 13–24.
[19] J. Katajainen and B. Simonsen, The design and description of a generic software

library (2009, work in progress).
[20] B. W. Kerninghan and D. M. Ritchie, The C Programming Language, Prentice-Hall

Inc (1978).
[21] R. Klarer, J. Maddock, B. Dawes, and H. Hinnant, Proposal to add static assertions to

the core language (rev. 3), Document number N1720, The C++ Standards Committee
(2004).

[22] J. Maddock and S. Cleary, Boost.StaticAssert, Worldwide Web Document
(2005). Available at http://www.boost.org/doc/libs/1_39_0/doc/html/boost_

staticassert.html.
[23] M. Mernik, J. Heering, and A. M. Sloane, When and how to develop domain-specific

languages, ACM Computing Surveys 37, 4 (2005), 316–344.
[24] M. Michaud and M. Wong, Forwarding and inherited constructors (rev. 2), Document

number N1898, The C++ Standards Committee (2005).
[25] Python Software Foundation, The official website of the Python programming lan-

guage, Website accessible at http://www.python.org/ (1990–2009).
[26] B. Simonsen, Foundations of an adaptable container library, M. Sc. Thesis, Depart-

ment of Computer Science, University of Copenhagen (2009).
[27] B. Simonsen, A framework for implementing associative containers, CPH STL Report

2009-3, Department of Computer Science, University of Copenhagen (2009).
[28] B. Simonsen, Towards stronger guarantees: Safer iterators, CPH STL Report 2009-

1, Department of Computer Science, University of Copenhagen (2009).
[29] B. Simonsen, View programming, Internal progress report (available on request),

40 Bo Simonsen

Department of Computer Science, University of Copenhagen (2009).
[30] E. Sitarski, Algorithm alley: HATs: Hashed array trees: Fast variable-length arrays,

Dr. Dobb’s Journal 21, 11 (1996).
[31] B. Stroustrup, The C++0x ”Remove Concepts” Decision, Dr. Dobb’s Journal (2009).
[32] H. Sutter, Proposed addition to C++: Typedef templates, Document number N1373,

The C++ Standards Committee (2002).
[33] D. Vandevoorde and N. M. Josuttis, C++ Templates: The Complete Guide, Addison-

Wesley (2003).

Towards better usability of component frameworks 41

Appendix: Table of contents

Selective use

stl-predefined-vectors.h++ . 42
predefined-vectors-test.c++ . 45

Named template arguments

nta.py (the preprocessor) . 45
search-tree-framework-test.c++ . 51
vector-framework-test.c++ . 53

Component families

families.h++ . 54
rank-iterator.h++ . 55
rank-iterator.i++ . 57

42 Bo Simonsen

Appendix A. Selective use

Appendix A.1 stl-predefined-vectors.h++

1 /*
2

3 Predefined vectors for the vector component framework
4

5 Author: Bo Simonsen, November 2009
6 */
7

8 #include "stl-vector.h++"
9 #include "vector-framework.h++"

10 #include "dynamic-array.h++" // defines cphstl::dynamic_array_kernel
11 #include "hashed-array-tree.h++" // defines cphstl::

dynamic_array_kernel
12 #include "indirect-encapsulator.h++" // defines cphstl::

dynamic_array_kernel
13 #include "doubly-indirect-encapsulator.h++" // defines cphstl::

dynamic_array_kernel
14 #include "proxy-iterator.h++" // defines cphstl::rank_iterator
15 #include "rank-iterator.h++" // defines cphstl::rank_iterator
16 #include <memory>
17

18 namespace cphstl {
19

20 template <typename V,
21 typename A = std::allocator<V> >
22 class fast_vector : public vector<V, A,
23 vector_framework<V, A,

dynamic_array<V, A,
direct_encapsulator<V, A>,
true > >,

24 rank_iterator< vector_framework<
V, A, dynamic_array<V, A,
direct_encapsulator<V, A >,
true > >, false>,

25 rank_iterator< vector_framework<
V, A, dynamic_array<V, A,
direct_encapsulator<V, A >,
true > >, true> > {

26 private:
27 typedef vector<V, A, vector_framework<V, A, dynamic_array<V, A,

direct_encapsulator<V, A>, true > >, rank_iterator<
vector_framework<V, A, dynamic_array<V, A,
direct_encapsulator<V, A >, true > >, false>, rank_iterator<
vector_framework<V, A, dynamic_array<V, A,
direct_encapsulator<V, A >, true > >, true> > superclass;

28 public:
29 explicit fast_vector(A const& a = A()) : superclass(a) {
30 }

Towards better usability of component frameworks 43

31 explicit fast_vector(typename superclass::size_type s, V const&
v = V(), A const& a = A()) : superclass(s, v, a) {

32 }
33

34 template <typename K>
35 fast_vector(K f, K l, A const& a = A()) : superclass(f, l, a) {
36 }
37

38 fast_vector(fast_vector const& v) : superclass(v) {
39 }
40 fast_vector& operator=(fast_vector const& v) {
41 superclass::operator=(v);
42 return (*this);
43 }
44 };
45

46 template <typename V,
47 typename A = std::allocator<V> >
48 class safe_vector : public vector<V, A,
49 vector_framework<V, A,

dynamic_array<V, A,
doubly_indirect_encapsulator
<V, A>, false > >,

50 proxy_iterator< vector_framework
<V, A, dynamic_array<V, A,
doubly_indirect_encapsulator
<V, A >, false > >, false>,

51 proxy_iterator< vector_framework
<V, A, dynamic_array<V, A,
doubly_indirect_encapsulator
<V, A >, false > >, true> >
{

52 private:
53 typedef vector<V, A, vector_framework<V, A, dynamic_array<V, A,

doubly_indirect_encapsulator<V, A>, false > >,
proxy_iterator< vector_framework<V, A, dynamic_array<V, A,
doubly_indirect_encapsulator<V, A >, false > >, false>,
proxy_iterator< vector_framework<V, A, dynamic_array<V, A,
doubly_indirect_encapsulator<V, A >, false > >, true> >
superclass;

54

55

56 public:
57 explicit safe_vector(A const& a = A()) : superclass(a) {
58 }
59 explicit safe_vector(typename superclass::size_type s, V const&

v = V(), A const& a = A()) : superclass(s, v, a) {
60 }
61

62 template <typename K>
63 safe_vector(K f, K l, A const& a = A()) : superclass(f, l, a) {
64 }

44 Bo Simonsen

65

66 safe_vector(safe_vector const& v) : superclass(v) {
67 }
68 safe_vector& operator=(safe_vector const& v) {
69 superclass::operator=(v);
70 return (*this);
71 }
72 };
73

74 template <typename V,
75 typename A = std::allocator<V> >
76 class compact_vector : public vector<V, A,
77 vector_framework<V, A,

hashed_array_tree<V, A,
direct_encapsulator<V, A>
> >,

78 rank_iterator<
vector_framework<V, A,
hashed_array_tree<V, A,
direct_encapsulator<V, A
> > >, false>,

79 rank_iterator<
vector_framework<V, A,
hashed_array_tree<V, A,
direct_encapsulator<V, A
> > >, true> > {

80 private:
81 typedef vector<V, A, vector_framework<V, A, hashed_array_tree<V,

A, direct_encapsulator<V, A> > >, rank_iterator<
vector_framework<V, A, hashed_array_tree<V, A,
direct_encapsulator<V, A > > >, false>, rank_iterator<
vector_framework<V, A, hashed_array_tree<V, A,
direct_encapsulator<V, A > > >, true> > superclass;

82

83 public:
84 explicit compact_vector(A const& a = A()) : superclass(a) {
85 }
86 explicit compact_vector(typename superclass::size_type s, V

const& v = V(), A const& a = A()) : superclass(s, v, a) {
87 }
88

89 template <typename K>
90 compact_vector(K f, K l, A const& a = A()) : superclass(f, l, a)

{
91 }
92

93 compact_vector(compact_vector const& v) : superclass(v) {
94 }
95 compact_vector& operator=(compact_vector const& v) {
96 superclass::operator=(v);
97 return (*this);
98 }

Towards better usability of component frameworks 45

99 };
100 }

Appendix A.2 predefined-vectors-test.c++

1 /*
2

3 Test program for the predefined vector classes. This is not a
full test

4 since the vector implementation is already tested using the smoke
-test.

5 This test is just testing the constructors.
6

7 Author: Bo Simonsen, November 2009
8

9 */
10

11 #include <cassert>
12 #include <memory> // defines std::allocator
13 #include "stl-predefined-vectors.h++"
14

15 template <typename V>
16 void test_members(V& v) {
17 v.push_back(5);
18 v.pop_back();
19 v.push_back(7);
20 v.clear();
21 }
22

23 #define create_vectors(x, n) x<int> v##n; \
24 x<int> vv##n(100);\
25 x<int> vvv##n(arr, arr+3);\
26 x<int> vvvv##n(v##n);
27

28 int main() {
29 int arr[] = {1,2,3};
30 create_vectors(cphstl::fast_vector, 1)
31 create_vectors(cphstl::safe_vector, 2)
32 create_vectors(cphstl::compact_vector, 3)
33 test_members(v1);
34 v1 = vv1;
35 test_members(v2);
36 v2 = vv2;
37 test_members(v3);
38 v3 = vv3;
39 }

Appendix B. The named template argument preprocessor

Appendix B.1 nta.py

1 #!/bin/python

46 Bo Simonsen

2

3 # Preprocessor for named template arguments.
4 # The preprocessor should be invoked instead of g++.
5 # All arguments are given to g++.
6 # Made by Bo Simonsen <bo@geekworld.dk>, June 2009
7

8 import sys
9 import re

10 import os
11 import os.path
12 import time
13

14 include_dirs = []
15 included_files = []
16

17 p_include = re.compile(’(#include (")([^]+)("))*’)
18 p_namespace = re.compile(".*namespace(.*)$")
19 p_template = re.compile(".*template[]*<(.+)>[]*class ([^;:]+)")
20 p_parameter = re.compile(’(typename|bool|int|char) ([^]+)[]*=?[

]*(.*)’)
21

22 gd = {}
23

24 def parse_cpp_block(buf, l):
25 def split_blocks(buf):
26 blocks = []
27

28 count = 0
29 j = 0
30 for i in xrange(0, len(buf)):
31 if buf[i] == ’<’:
32 count += 1
33 if buf[i] == ’>’:
34 count -= 1
35 if buf[i] == ’,’ and count == 0:
36 blocks.append(buf[j:i])
37 j = i+1
38 i += 1
39

40 blocks.append(buf[j:])
41

42 return blocks
43

44 def transform_default_value((k,v)):
45 i = v.find("<")
46 j = v.rfind(">")
47

48 if i == -1 and j == -1:
49 return (k,(v, []))
50

51 args = v[i+1:j]
52 new_v = [x.strip() for x in split_blocks(args)]

Towards better usability of component frameworks 47

53

54 return (k,(v[:i], new_v))
55

56 d = {}
57

58 i = -1
59 j = -1
60

61 while 1:
62 old_j = j+1
63

64 i = buf.find("{", i+1)
65 if i == -1:
66 break
67

68 count = 1
69

70 j = i
71 while count > 0:
72 if buf[j+1] == ’{’:
73 count += 1
74 elif buf[j+1] == ’}’:
75 count -= 1
76 j+=1
77

78 block = buf[i+1:j]
79 newbuf = buf[old_j:i]
80

81 if p_namespace.match(newbuf):
82 tok = p_namespace.split(newbuf)[1].strip()
83 l.append(tok)
84

85 elif p_template.match(newbuf):
86 arr = p_template.split(newbuf)
87 class_name = arr[2].strip()
88 blocks = [x.strip() for x in split_blocks(arr[1])]
89

90 # We don’t care about specialization!
91 # i.e. class class_name<...>
92 if class_name.find("<") == -1 and class_name.find(">") == -1:
93 new_class_name = "::".join(l) + "::" + class_name
94 new_blocks = [transform_default_value(tuple(p_parameter.

split(x)[2:4])) for x in blocks]
95 d[new_class_name] = new_blocks
96

97 d.update(parse_cpp_block(block, l))
98

99 return d
100

101 def parse_cpp_file(filename):
102

103 def strip_nl_tab(buf):

48 Bo Simonsen

104 new_buf = ""
105 for i in buf:
106 if i != ’\n’ and i != ’\t’:
107 new_buf += i
108 else:
109 new_buf += " "
110 return new_buf
111

112 fh = open(filename, "r")
113 buf = fh.read()
114 fh.close()
115

116 buf = strip_nl_tab(buf)
117

118 d = parse_cpp_block(buf, [])
119

120 includes = p_include.split(buf)
121

122 for i in xrange(0, len(includes)/5):
123 fn = includes[(i*5)+3]
124 if fn not in included_files:
125 for l in include_dirs:
126 try:
127 d.update(parse_cpp_file(l + "/" + fn))
128 included_files.append(fn)
129 except:
130 pass
131

132 return d
133

134 def parse_nta_block(x):
135 d = {}
136 i = 0
137 j = 0
138 blocks = []
139

140 while i < len(x):
141

142 if x[i] == ’,’:
143 blocks.append(x[j:i])
144 j = i+1
145 if (x[i] == ’!’ and x[i+1] == ’<’) or x[i] == ’<’:
146 if x[i] == ’<’:
147 tmp = i+1
148 else:
149 tmp = i+2
150

151 count = 1
152 while count > 0:
153 if (x[tmp] == ’!’ and x[tmp+1] == ’<’) or x[tmp] == ’<’:
154 count += 1
155 if (x[tmp] == ’!’ and x[tmp+1] == ’>’) or x[tmp] == ’>’:

Towards better usability of component frameworks 49

156 count -= 1
157 tmp = tmp+1
158

159 if x[i] == ’<’:
160 i = tmp-1
161 else:
162 i = tmp
163

164 i+=1
165

166 blocks.append(x[j:])
167

168 for i in blocks:
169 j = i.strip()
170 arr = j.split(’=’, 1)
171

172 key = arr[0].strip()
173 val = arr[1].strip()
174

175 q = val.find("!<")
176 if q == -1:
177 d[key] = (val, {})
178 else:
179 w = val.rfind("!>")
180 d[key] = (val[:q], parse_nta_block(val[q+2:w]))
181 return d
182

183

184

185 def generate_code(a, d, dd):
186

187 result = a + "<"
188

189 for (k, v) in dd[a]:
190 if d.has_key(k):
191 x = d[k]
192 if x[1] != {}:
193 y = generate_code(x[0], x[1], dd)
194 result += y + ","
195 gd[k] = y
196 elif dd.has_key(x[0]):
197 y = generate_code(x[0], {}, dd)
198 result += y + ","
199 gd[k] = y
200 else:
201 result += x[0] + ","
202 gd[k] = x[0]
203 elif gd.has_key(k):
204 result += gd[k] + ","
205 else:
206 (a, b) = v
207 if b != []:

50 Bo Simonsen

208 y = a + "<"
209 for i in b:
210 if gd.has_key(i):
211 y += gd[i] + ","
212 y += "> "
213

214 result += y + ","
215 gd[k] = y
216 elif gd.has_key(a):
217 result += gd[a] + ","
218 gd[k] = gd[a]
219 else:
220 result += a + ","
221 gd[k] = a
222

223 result += "> \n"
224 result = result.replace(",>", " >")
225

226 return result
227

228 def parse_it(input_file):
229 dd = parse_cpp_file(input_file)
230

231 result_fn = "/tmp/nta-%s.c++" % os.path.basename(input_file)
232

233 fhh = open(result_fn, "w")
234 fh = open(input_file)
235 while 1:
236 buf = fh.readline()
237

238 if buf == "":
239 break
240

241 c = buf.count("!<")
242 cc = buf.count("!>")
243

244 while cc != c:
245 tmp_buf = fh.readline()
246 if tmp_buf == "":
247 print "Error!"
248 sys.exit(1)
249

250 c += tmp_buf.count("!<")
251 cc += tmp_buf.count("!>")
252 buf += tmp_buf
253

254 if c != 0 and cc != 0:
255 x1 = buf.find(’!<’)
256 x2 = buf.rfind(’!>’)
257

258 while buf[x1] != ’ ’:
259 x1 -= 1

Towards better usability of component frameworks 51

260

261 x1 += 1
262 x2 += 2
263

264 gd.clear()
265

266 d = parse_nta_block("x=" + buf[x1:x2])[’x’]
267

268 print d
269

270 new_buf = buf[:x1]
271 new_buf += generate_code(d[0], d[1], dd)
272 new_buf += buf[x2:]
273 fhh.write(new_buf)
274 else:
275 fhh.write(buf)
276

277 fhh.close()
278

279 return result_fn
280

281 start = time.time()
282

283 i = 1
284 while i < len(sys.argv):
285 if sys.argv[i].startswith(’-I’):
286 if len(sys.argv[i]) == 2:
287 include_dirs.append(sys.argv[i+1])
288 i += 1
289 else:
290 include_dirs.append(sys.argv[i][2:])
291

292 i+=1
293

294 result_fn = parse_it(sys.argv[-1])
295 cmd = "g++ " + " ".join(sys.argv[1:-1]) + " " + result_fn
296 """ bla """
297 gcc_start = time.time()
298 if not os.system(cmd):
299 print "Compilation succeded (nta time: %fs, gcc time: %fs)" % (

gcc_start - start, time.time() - gcc_start)
300 os.unlink(result_fn)
301 else:
302 print "Compilation failed"

Appendix B.2 search-tree-framework-test.c++

1 /*
2

3 Test program for the named template argument preprocessor.
4

5 The preprocessor should be invoked by:

52 Bo Simonsen

6

7 python nta.py -I<includedir> -I ... search-tree-framework-test.
c++

8

9 Author: Bo Simonsen, June 2009
10

11 */
12

13 #include "node-iterator.h++"
14 #include "stl_set.h++"
15 #include "stl_map.h++"
16 #include "stl_multiset.h++"
17 #include "stl_multimap.h++"
18 #include "tree.h++"
19 #include "red_black_tree_balance.h++"
20 #include "red_black_tree_node.h++"
21 #include "red_black_tree_bp_node.h++"
22 #include "splay_tree_balance.h++"
23 #include "splay_tree_node.h++"
24 #include "avl_tree_balance.h++"
25 #include "avl_tree_node.h++"
26 #include "avl_tree_bp_node.h++"
27 #include "aa_tree_node.h++"
28 #include "aa_tree_balance.h++"
29

30 int main() {
31 typedef cphstl::set!<V=int,
32 R=cphstl::tree!<
33 N=cphstl::avl_tree_node!<se=true!>,
34 B=cphstl::avl_tree_balance_policy
35 !>,
36 I=cphstl::node_iterator!<is_const=false!>,
37 J=cphstl::node_iterator!<is_const=true!>
38 !> SC;
39 typedef cphstl::map!<K=char,
40 V=int,
41 A=std::allocator<std::pair<char, int> >,
42 R=cphstl::tree!<
43 V=std::pair<char, int>,
44 F=cphstl::unnamed::key_functor,
45 N=cphstl::aa_tree_node,
46 B=cphstl::aa_tree_balance_policy
47 !>,
48 I=cphstl::node_iterator!<is_const=false!>,
49 J=cphstl::node_iterator!<is_const=true!>
50 !> MC;
51 typedef cphstl::multiset!<V=int,
52 R=cphstl::tree!<
53 N=cphstl::red_black_tree_node,
54 B=cphstl::red_black_tree_balance_policy,
55 is_multiset=true
56 !>,

Towards better usability of component frameworks 53

57 I=cphstl::node_iterator!<is_const=false!>,
58 J=cphstl::node_iterator!<is_const=true!>
59 !> MSC;
60 typedef cphstl::multimap!<K=char,
61 V=int,
62 A=std::allocator<std::pair<char, int> >,
63 R=cphstl::tree!<
64 V=std::pair<char, int>,
65 F=cphstl::unnamed::key_functor,
66 N=cphstl::splay_tree_node,
67 B=cphstl::splay_tree_balance_policy,
68 is_multiset=true
69 !>,
70 I=cphstl::node_iterator!<is_const=false!>,
71 J=cphstl::node_iterator!<is_const=true!>
72 !> MMC;
73

74 SC sc;
75 MC mc;
76 MSC msc;
77 MMC mmc;
78

79 for(int i=0; i < 10; ++i) {
80 sc.insert(i);
81 msc.insert(i);
82 mc[(char) i + 65] = i;
83 mmc.insert(std::pair<char, int>((char) i + 65, i));
84 }
85 }

Appendix B.3 vector-framework-test.c++

1 /*
2

3 Test program for the named template argument preprocessor.
4

5 The preprocessor should be invoked by:
6

7 python nta.py -I<includedir> -I ... search-tree-framework-test.
c++

8

9 Author: Bo Simonsen, June 2009
10

11 */
12

13 #include <memory> // defines std::allocator
14 #include "stl-vector.h++" // defines cphstl::vector
15 #include "vector-framework.h++"
16 #include "dynamic-array.h++" // defines cphstl::dynamic_array_kernel
17 #include "hashed-array-tree.h++" // defines cphstl::

dynamic_array_kernel

54 Bo Simonsen

18 #include "indirect-encapsulator.h++" // defines cphstl::
dynamic_array_kernel

19 #include "doubly-indirect-encapsulator.h++" // defines cphstl::
dynamic_array_kernel

20 #include "proxy-iterator.h++" // defines cphstl::rank_iterator
21 #include "rank-iterator.h++" // defines cphstl::rank_iterator
22 #include <list>
23

24 int main() {
25 typedef cphstl::vector!<V=int,
26 R=cphstl::vector_framework!<
27 K=cphstl::hashed_array_tree!<
28 E=cphstl::doubly_indirect_encapsulator
29 !>
30 !>,
31 I=cphstl::proxy_iterator!<is_const=false

!>,
32 J=cphstl::proxy_iterator!<is_const=true!>
33 !> C;
34 C v;
35 for(int i=0; i < 10; i++) {
36 v.insert(v.begin(), i);
37 }
38

39 C::iterator it = v.begin();
40 int i = 9;
41 while(it != v.end()) {
42 assert(*it == i);
43 ++it; --i;
44 }
45 }

Appendix C. Component families

Appendix C.1 families.h++

1 #include "direct-encapsulator.h++"
2 #include "indirect-encapsulator.h++"
3 #include "doubly-indirect-encapsulator.h++"
4

5 #define NEW_ENCAPSULATOR_FAMILY(f) template <typename V, typename A,
typename E> \

6 class f##_classes { \
7 public: \
8 enum {positive = 0}; \
9 };

10

11 #define JOIN_ENCAPSULATOR_FAMILY(f, c) template <typename V,
typename A> \

12 class f##_classes< V, A, c <V, A> > { \
13 public: \
14 enum {positive = 1}; \

Towards better usability of component frameworks 55

15 };
16

17 #ifdef __GXX_EXPERIMENTAL_CXX0X__
18 #define IS_ENCAPSULATOR_IN_FAMILY(e, f) static_assert(\
19 f##_classes<typename e::value_type, typename e::allocator_type, e

>::positive == 1, \
20 "Encapsulator " #e " is not in family _" #f "_" \
21);
22 #else
23 #define IS_ENCAPSULATOR_IN_FAMILY(e, f)
24 #endif
25

26 namespace cphstl {
27 NEW_ENCAPSULATOR_FAMILY(proxy)
28 NEW_ENCAPSULATOR_FAMILY(rank)
29 JOIN_ENCAPSULATOR_FAMILY(proxy, doubly_indirect_encapsulator)
30 JOIN_ENCAPSULATOR_FAMILY(proxy, indirect_encapsulator)
31 JOIN_ENCAPSULATOR_FAMILY(rank, direct_encapsulator)
32 }

Appendix C.2 rank-iterator.h++

1 /*
2 A rank-based iterator is just a (pointer, index) pair where the
3 pointer points to the data structure containing the cell referred

to
4 and the index is the rank of that cell in the sequence of cells
5 storing the elements.
6

7 The idea of combining iterators and const iterators into the same
8 class is taken from [Matt Austern. Defining iterators and const
9 iterators. C/C++ User’s Journal 19,1 (2001), 74-79].

10

11 Authors: Jyrki Katajainen, Bo Simonsen (C) 2008
12 */
13

14 #ifndef __CPHSTL_RANK_ITERATOR__
15 #define __CPHSTL_RANK_ITERATOR__
16

17 #include <cstddef> // defines std::size_t and std::ptrdiff_t
18 #include <iterator> // defines std::random_access_iterator_tag
19 #include "type.h++" // defines cphstl::if_then_else
20 #include <utility> // defines std::pair
21

22 namespace cphstl {
23

24 template <typename V, typename A, typename R, typename I, typename
J>

25 class vector;
26

27 template <typename R, bool is_const = false, typename E = typename
R::encapsulator_type>

56 Bo Simonsen

28 class rank_iterator {
29 #ifdef IS_ENCAPSULATOR_IN_FAMILY
30 IS_ENCAPSULATOR_IN_FAMILY(E, rank)
31 #endif
32

33 public:
34 // types
35

36 typedef std::random_access_iterator_tag iterator_category;
37 typedef typename R::value_type value_type;
38 typedef std::size_t size_type;
39 typedef std::ptrdiff_t difference_type;
40 typedef typename if_then_else<is_const, value_type const*,

value_type*>::type pointer;
41 typedef typename if_then_else<is_const, typename R::

const_reference, typename R::reference>::type reference;
42

43 typedef E entry;
44 typedef typename R::surrogate_type surrogate_type;
45

46 protected:
47

48 // types
49

50 typedef typename if_then_else<is_const, E const*, E*>::type
node_pointer;

51

52 public:
53

54 // friends
55

56 friend class rank_iterator<R, !is_const, E>;
57

58 template <typename V, typename A, typename S, typename I,
typename J>

59 friend class cphstl::vector;
60

61 // structors
62

63 rank_iterator();
64 rank_iterator(rank_iterator<R, false, E> const&);
65 rank_iterator(rank_iterator<R, true, E> const&);
66 rank_iterator& operator=(rank_iterator const&);
67 ~rank_iterator();
68

69 // operators
70

71 reference operator*() const;
72 pointer operator->() const;
73 rank_iterator& operator++();
74 rank_iterator operator++(int);
75 rank_iterator& operator--();

Towards better usability of component frameworks 57

76 rank_iterator operator--(int);
77 rank_iterator& operator+=(difference_type);
78 rank_iterator& operator-=(difference_type);
79 rank_iterator operator+(difference_type) const;
80 rank_iterator operator-(difference_type) const;
81 difference_type operator-(rank_iterator const&) const;
82

83 template <bool both>
84 bool operator==(rank_iterator<R, both, E> const&) const;
85

86 template <bool both>
87 bool operator!=(rank_iterator<R, both, E> const&) const;
88

89 template <bool both>
90 bool operator<(rank_iterator<R, both, E> const&) const;
91

92 template <bool both>
93 bool operator>(rank_iterator<R, both, E> const&) const;
94

95 template <bool both>
96 bool operator<=(rank_iterator<R, both, E> const&) const;
97

98 template <bool both>
99 bool operator>=(rank_iterator<R, both, E> const&) const;

100

101 protected:
102 // converters to be used by the container friends
103 rank_iterator(std::pair<size_type, surrogate_type*> const&);
104 operator std::pair<size_type, surrogate_type*>() const;
105

106 void advance(difference_type const& n);
107

108 surrogate_type* surrogate;
109 size_type position;
110 };
111

112 template<typename R, bool both, typename E>
113 rank_iterator<R, both, E>
114 operator+(typename R::difference_type, rank_iterator<R, both, E>

const&);
115

116 }
117

118 #include "rank-iterator.i++" // implements cphstl::rank_iterator
119

120 #endif

Appendix C.3 rank-iterator.i++

1 /*
2 Implementation of cphstl::rank_iterator
3

58 Bo Simonsen

4 Authors: Jyrki Katajainen, Bo Simonsen (C) 2008
5 */
6

7 #include <cassert> // defines assert macro
8 #include <iostream>
9

10 namespace cphstl {
11

12 // default constructor
13

14 template <typename R, bool is_const, typename E>
15 rank_iterator<R, is_const, E>::rank_iterator()
16 : surrogate(0), position(size_type()) {
17 }
18

19 // copy constructor
20

21 template <typename R, bool is_const, typename E>
22 rank_iterator<R, is_const, E>::rank_iterator(rank_iterator<R,

false, E> const& a)
23 : surrogate(a.surrogate), position(a.position) {
24 }
25

26 template <typename R, bool is_const, typename E>
27 rank_iterator<R, is_const, E>::rank_iterator(rank_iterator<R, true

, E> const& a)
28 : surrogate(a.surrogate), position(a.position) {
29 }
30

31 // assignment
32

33 template <typename R, bool is_const, typename E>
34 rank_iterator<R, is_const, E>&
35 rank_iterator<R, is_const, E>::operator=(rank_iterator<R, is_const

, E> const& a) {
36 (*this).surrogate = a.surrogate;
37 (*this).position = a.position;
38 return *this;
39 }
40

41 // destructor
42

43 template <typename R, bool is_const, typename E>
44 rank_iterator<R, is_const, E>::~rank_iterator() {
45 }
46

47 // operator*
48

49 template <typename R, bool is_const, typename E>
50 typename rank_iterator<R, is_const, E>::reference
51 rank_iterator<R, is_const, E>::operator*() const {

Towards better usability of component frameworks 59

52 return reference((*(*(*this).surrogate).subject()).access((*this
).position));

53 }
54

55 // operator->
56

57 template <typename R, bool is_const, typename E>
58 typename rank_iterator<R, is_const, E>::pointer
59 rank_iterator<R, is_const, E>::operator->() const {
60 return pointer(&(*(*this).position).content());
61 }
62

63 template <typename R, bool is_const, typename E>
64 void
65 rank_iterator<R, is_const, E>::advance(difference_type const& n) {
66 if (n == 0)
67 return;
68 (*this).position += n;
69 }
70

71 // operator++; pre-increment
72

73 template <typename R, bool is_const, typename E>
74 rank_iterator<R, is_const, E>&
75 rank_iterator<R, is_const, E>::operator++() {
76 (*this).advance(1);
77 return *this;
78 }
79

80 // operator++; post-increment
81

82 template <typename R, bool is_const, typename E>
83 rank_iterator<R, is_const, E>
84 rank_iterator<R, is_const, E>::operator++(int) {
85 rank_iterator<R, is_const, E> temporary = *this;
86 (*this).advance(1);
87 return temporary;
88 }
89

90 // operator--; pre-decrement
91

92 template <typename R, bool is_const, typename E>
93 rank_iterator<R, is_const, E>&
94 rank_iterator<R, is_const, E>::operator--() {
95 (*this).advance(-1);
96 return *this;
97 }
98

99 // operator--; post-decrement
100

101 template <typename R, bool is_const, typename E>
102 rank_iterator<R, is_const, E>

60 Bo Simonsen

103 rank_iterator<R, is_const, E>::operator--(int) {
104 rank_iterator<R, is_const, E> temporary = *this;
105 (*this).advance(-1);
106 return temporary;
107 }
108

109 // operator+=
110

111 template <typename R, bool is_const, typename E>
112 rank_iterator<R, is_const, E>&
113 rank_iterator<R, is_const, E>::operator+=(difference_type n) {
114 (*this).advance(n);
115 return *this;
116 }
117

118 // operator-=
119

120 template <typename R, bool is_const, typename E>
121 rank_iterator<R, is_const, E>&
122 rank_iterator<R, is_const, E>::operator-=(difference_type n) {
123 (*this).advance(-n);
124 return *this;
125 }
126

127 // operator+
128

129 template <typename R, bool is_const, typename E>
130 rank_iterator<R, is_const, E>
131 rank_iterator<R, is_const, E>::operator+(difference_type n) const

{
132 rank_iterator<R, is_const, E> temporary = *this;
133 temporary.advance(n);
134 return temporary;
135 }
136

137 // operator-
138

139 template <typename R, bool is_const, typename E>
140 rank_iterator<R, is_const, E>
141 rank_iterator<R, is_const, E>::operator-(difference_type n) const

{
142 rank_iterator<R, is_const, E> temporary = *this;
143 temporary.advance(-n);
144 return temporary;
145 }
146

147 // iterator distance
148

149 template <typename R, bool is_const, typename E>
150 typename rank_iterator<R, is_const, E>::difference_type
151 rank_iterator<R, is_const, E>::operator-(rank_iterator<R, is_const

, E> const& a) const {

Towards better usability of component frameworks 61

152 return (*this).position - a.position;
153 }
154

155 // operator==
156

157 template <typename R, bool is_const, typename E>
158 template <bool both>
159 bool
160 rank_iterator<R, is_const, E>::operator==(rank_iterator<R, both, E

> const& a) const {
161 return (*this).position == a.position;
162 }
163

164 // operator!=
165

166 template <typename R, bool is_const, typename E>
167 template <bool both>
168 bool
169 rank_iterator<R, is_const, E>::operator!=(rank_iterator<R, both, E

> const& a) const {
170 return !(*this == a);
171 }
172

173 // operator<
174

175 template <typename R, bool is_const, typename E>
176 template <bool both>
177 bool
178 rank_iterator<R, is_const, E>::operator<(rank_iterator<R, both, E>

const& a) const {
179 return ((*this) - a) < 0;
180 }
181

182 // operator>
183

184 template <typename R, bool is_const, typename E>
185 template <bool both>
186 bool
187 rank_iterator<R, is_const, E>::operator>(rank_iterator<R, both, E>

const& a) const {
188 return a < *this;
189 }
190

191 // operator<=
192

193 template <typename R, bool is_const, typename E>
194 template <bool both>
195 bool
196 rank_iterator<R, is_const, E>::operator<=(rank_iterator<R, both, E

> const& a) const {
197 return !(a < *this);
198 }

62 Bo Simonsen

199

200 // operator>=
201

202 template <typename R, bool is_const, typename E>
203 template <bool both>
204 bool
205 rank_iterator<R, is_const, E>::operator>=(rank_iterator<R, both, E

> const& a) const {
206 return !(*this < a);
207 }
208

209 // operator+(int, iterator)
210

211 template <typename R, bool is_const, typename E>
212 rank_iterator<R, is_const, E> operator+(typename R::

difference_type n, rank_iterator<R, is_const, E> const& a) {
213 return a + n;
214 }
215

216 // parametrized constructor
217

218 template <typename R, bool is_const, typename E>
219 rank_iterator<R, is_const, E>::rank_iterator(std::pair<size_type,

surrogate_type*> const& p)
220 : surrogate(p.second), position(p.first) {
221

222 }
223

224 // convertion operator
225

226 template <typename R, bool is_const, typename E>
227 rank_iterator<R, is_const, E>::operator std::pair<size_type,

surrogate_type*>() const {
228 return std::pair<size_type, surrogate_type*>((*this).position,

(*this).surrogate);
229 }
230

231 }

