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Introduction

For several years, my research collaborators (Jesper Bojesen, Asger Bruun,
Jingsen Chen, Stefan Edelkamp, Amr Elmasry, Ramzi Fadel, Kim Vagn
Jakobsen, Claus Jensen, Jens Rasmussen, Maz Spork, Jukka Teuhola, and
Fabio Vitale) and I have been studying the performance of different priority
queues for different sets of operations in a variety of computational environ-
ments. At the theoretical level, we have measured the goodness in terms of
the comparison complexity of different operations. As the other optimization
criteria, we have considered how to reduce the number of element moves,
instructions, branch mispredictions, and cache misses. At the practical level,
we have used the actual running time as the key performance indicator. We
have done most of our experiments on synthetic request sequences, but we
have also done some application engineering.

I assume that the reader is familiar with priority queues studied in most
textbooks on algorithms and data structures (see, for example, [10, Section
6.5]). A brief market analysis is given in Table 1. Priority queues can be
classified into three categories depending on which operations are supported:
Elementary. minimum, insert , and extract-min are supported (as for a

binary heap [38]);
Addressable. minimum, insert , extract-min, delete, and decrease are sup-

ported (the term addressable is taken from [32, Section 6.2]);
Mergeable. minimum, insert , extract-min, delete, decrease, and union are

supported (the term mergeable is taken from [1, Section 4.11]).

Table 1. Asymptotic performance of the most popular priority queues in the word-RAM
model. Here N and M denote the number of elements in the priority queues just prior to
the operation.

Efficiency

Operation

binary
heap [33, 38]
worst case

Fibonacci
heap [23]
amortized

run-relaxed
heap [11]
worst case

minimum Θ(1) Θ(1) Θ(1)
insert Θ(lgN) Θ(1) Θ(1)
decrease Θ(lgN) Θ(1) Θ(1)
extract-min Θ(lgN) Θ(lgN) Θ(lgN)
delete Θ(lgN) Θ(lgN) Θ(lgN)
union Θ(lgN × lgM) Θ(1) Θ(min{lgN, lgM})

1 Presented at the Dagstuhl Seminar 13391 “Algorithm Engineering” in September 2013



2

Table 2. Performance of some elementary priority queues in terms of the number of
element comparisons performed. Here N denotes the number of elements currently stored.
All the data structures mentioned support minimum in O(1) worst-case time.

Data structure insert extract-min
binary heaps [38] lgN +O(1) 2 lgN +O(1)
heaps on heaps [24] lg lgN ±O(1)a) lgN + log∗N ±O(1)b)

optimal in-place heaps [15] O(1) lgN +O(1)
lower bounds Ω(1) lgN −O(1)

a) Binary search on the siftup path (also in [7])
b) lgN−lg lgN levels down along the siftdown path, siftup in a binary-search
manner, or recur further down

In my talk I surveyed the theoretical results obtained and I discussed the
methodological issues encountered when performing practical experiments.
The talk was structured in the question-and-answer form. Below I summa-
rize the questions (Q) posed and give links to the papers where (partial)
answers (A) to these questions are provided.

I Elementary priority queues

Q. What is the best elementary priority queue when handling a request
sequence consisting of N insert and N extract-min operations? Here best
means in terms of the number of element comparisons performed and in
terms of the actual running time. As a binary heap [38], the data structure
should be in-place, i.e. in addition to an array of elements it should only use
O(1) words of additional memory.

A. As to the number of element comparisons performed, the most significant
results are summarized in Table 2. Half a century it was open whether there
exists an in-place data structure that guarantees O(1) worst-case time for
minimum and insert , and O(lgN) worst-case time for extract-min such that
extract-min performs at most lgN +O(1) element comparisons. In view of
the lower bounds proved in [24], it was not entirely clear if such a structure
exists. We settled this long-standing open problem in [15]. Unfortunately,
the devised data structure is galactic [30] in a sense that—in spite of its
optimal asymptotic behaviour—only a masochist would implement it and
one cannot expect any positive effect in performance in this galaxy.

Although impractical, the ideas behind optimal in-place heaps are inter-
esting. To bypass the lower bound for extract-min, we reinforce a stronger
requirement at the bottom levels that the element at any left child is not
larger than the element at its right sibling. To bypass the lower bound for
insert , we allow O(lg2N) nodes not to obey the binary-heap order in rela-
tion to their parents. Time will show if optimal in-place heaps, or some of
their substructures, can be converted into practical data structures.
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Q. What is the importance of other complexity measures?

A. It is widely known that variants of binary heaps guaranteeing good worst-
case comparison complexity are slow in practice (see, e.g. [8, 25]). Therefore,
several investigators have tried to improve the performance of binary heaps
by considering other complexity measures (the number of element moves,
instructions, branch mispredictions, and cache misses). The most significant
competitors to Williams’ original version [38] are:

Bottom-up version. The siftup function is implemented as in the original,
but the siftdown function is modified such that it first traverses down
from the root to a leaf along the path of minimum children and then
up along the same path until the correct position of the element under
processing is found [27, Section 5.2.3, Exercise 18] (see also [36]).

Multi-ary version. By increasing the number of children per node from
2 to d > 2 [26], insert will become faster since the height of the heap
decreases, but extract-min may become slower since the determination
of the minimum child at each level is more involved. In practice, values
d ∈ {2, 3, 4, 8} are relevant.

Instruction-optimized version. In [3], the siftdown and siftup functions
of the original version were converted into pure C, which is a glori-
fied assembly language, and then the code was rewritten to avoid all
extraneous instructions. In particular, move instructions i = j; were
avoided, array indexing was replaced with pointer arithmetic, and all
multiplications were avoided when manipulating pointers.

Branch-optimized version. Assume that less is the function used in
element comparisons. The idea behind branch optimization proposed
in [19] is simple: Remove the if statement

i f (less(a [j ] , a [j + 1]) ) {
j += 1;
}

in the siftdown function, since the outcome of this branch is hard to
predict, and replace it with

j += less(a [j ] , a [j + 1]) ;

Cache-optimized version. External heaps described in [37] are binary
heaps where each node is a sorted array of elements. The data struc-
ture could be made in-place, but in a practical implementation it is
convenient to use two buffers, one reserved for insert and another for
extract-min. Only occasionally, when the insertion buffer gets full or
the deletion buffer becomes empty, it is necessary update the heap
itself. More advanced external heaps are described in [22, 34].

The theoretical performance of the proposed variants is summarized in
Tables 3 a)–d). Observe that the cache performance of external heaps is
actually better than that claimed in the original paper [37]. Bojesen [2]
observed that the bounds can be improved by increasing the size of the
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Table 3. The theoretical performance of different versions of binary heaps. N denotes
the number of elements stored, M the number of elements that fit in the cache, and B the
number of elements that fit in a cache line. For a function f , tilde notation means that
∼f(N) approaches f(N) as N grows.

a) # element moves

Data structure insert extract-min
original version [38] ∼lgN ∼lgN
4-ary version [29] ∼(1/2) lgN ∼(1/2) lgN

b) # pure-C instructions

Data structure insert extract-min
original version [38] ∼9 lgN ∼12 lgN
code-tuned version [3] ∼5 lgN ∼9 lgN

c) # branch mispredictions

Data structure insert extract-min
original version [38] O(1) ∼(1/2) lgN
branch-optimized version [19] O(1) O(1)

d) # cache misses

Data structure insert extract-min
original version [38] ∼lg (N/M) ∼lg (N/M)
cache-optimized version [37] ∼(1/B) lg (N/M)∗) ∼(2/B) lg (N/M)∗)

∗) amortized

nodes from Θ(B) to Θ(M) ((1/4)M in our implementation). Here B and
M denote the size of cache lines and the size of the cache (L1 cache in our
case), respectively; both measured in elements.

When testing the practical behaviour2 of the proposed variants, we con-
sidered a request sequence consisting of N insert operations followed by N
extract-min operations. The elements were random integers of type int. To
make sure that clock imprecision did not have any negative effect on the
measurement results, we repeated each test 226/N times. Tables 4 a)–f)
report the obtained results for different performance indicators.

2 All the experiments, that should be taken as sanity checks, were carried out in the
following environment:

Processor. Intel R© CoreTM i5-2520M CPU @ 2.50GHz × 4

Memory system. 8-way-associative L1 cache: 32 KB; 12-way-associative L3 cache:
3 MB; cache lines: 64 B; main memory: 3.8 GB

Operating system. Ubuntu 13.04 (Linux kernel 3.5.0-37-generic)

Compiler. g++ compiler (gcc version 4.7.3) with optimization -O3

Profiler. valgrind simulators (version 3.8.1)
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Table 4. The practical performance of different versions of binary heaps for a request
sequence consisting of N insert operations followed by N extract-min operations. M
denotes the number of elements that fit in the cache and B the number of elements that
fit in a cache line. Each test was repeated r = 226/N times and the reported values are
the grand totals divided by r × N lg N or r × (N/B) lg (max{2, N/M}). CPU times are
given in nanoseconds.

a) # element comparisons

Data structure \ N 210 215 220 225

original version [38] 1.73 1.82 1.87 1.89
bottom-up version [36] 1.09 1.07 1.05 1.04
comparison-optimized version [7] 1.49 1.37 1.37 1.3

b) # element moves

Data structure \ N 210 215 220 225

original version [38] 1.96 1.64 1.48 1.39
4-ary version [29] 1.41 1.11 0.95 0.86

c) # instructions

Data structure \ N 210 215 220 225

original version [38] 15.1 14.9 14.8 14.7
code-tuned version [3] 15.5 14.8 14.5 14.3

d) # branch mispredictions

Data structure \ N 210 215 220 225

original version [38] 0.59 0.56 0.54 0.53
branch-optimized version [19] 0.20 0.14 0.10 0.08

e) # L1 cache misses

Data structure \ N 210 215 220 225

original version [38] 1.00 13.1 19.1 19.7
cache-optimized version [37] 1.06 6.83 4.26 3.63

f) CPU times

Data structure \ N 210 215 220 225

std-library version [g++] 6.41 6.09 6.96 12.6
original version [38] 5.59 5.45 6.47 12.2
comparison-optimized version [7] 9.69 8.34 9.02 14.5
code-tuned version [3] 5.44 5.41 6.31 11.8
branch-optimized version [19] 3.92 4.16 7.2 25.8
bottom-up version [36] 6.77 6.63 7.34 13.1
4-ary version [29] 5.47 5.49 6.3 10.4
cache-optimized version [37] 5.23 5.27 5.69 6.04
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Based on the results of these experiments, we conclude the following:
1. In spite of the many papers written on binary heaps, very little progress

has been made since the seminal work of Williams [38]. His original
programs are fast and the variants proposed seem to make the programs
slower (for integer data).

2. In 2000 [3], with code tuning one could improve the running time of
the programs by about 20%. On contemporary computers with today’s
compiler technology, time spent on code tuning seems wasted.

3. Branch optimization pays off for small problem instances, but for large
problem instances something strange happens. We do not know the
reason for the extreme slowdown when N is large.

4. External heaps work amazingly well. We used the code from Bojesen’s
heaplab [2] as the starting point for our development, so much of the
credit belongs to him. Naturally, we used branch optimization when
manipulating the buffers. When implemented this way, an external
heap seems to be the only real competitor to an ordinary binary heap.
However, the running times are amortized, not worst-case, as for other
versions.

II Addressable priority queues

Q. What is the best addressable priority queue when handling a request
sequence consisting of N insert , N extract-min, and M decrease operations?
We use the number of element comparisons and the actual running time as
the performance indicators.

A. Interestingly, in [13] we could prove that Fibonacci heaps [23] are not
optimal with respect to the number of element comparisons performed,
although they were designed having this request sequence in mind. A
rank-relaxed weak heap [13] can process the request sequence with at most
2M + 1.5N lgN element comparisons, whereas the best bound known for
a Fibonacci heap is 2M + 2.89N lgN element comparisons. On the other
hand, more complicated data-structural transformations are needed in the
implementation of a rank-relaxed weak heap; the program code turned out
to be about a factor of three longer compared to that of a streamlined im-
plementation of a Fibonacci heap (for details, see [13]).

Q. Does a factor of two matter?

A. Yes, when we talk about the amount of code needed in the implementa-
tion of the data structures. In many of our experimental studies [6, 13, 21]
we have relied on policy-based design when implementing a set of related
data structures. By parametrizing the implementations with policies a sig-
nificant reuse of code is possible. Also, policy-based design will lead to
fairer benchmarking. When only one or two policies are changed, keeping
the other parts of the data structure unchanged, it is clear that any dif-
ferences in performance are due to these changes. That is, we will be less
vulnerable for the abilities of an individual programmer.
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As to the running time, a single factor-of-two improvement may not be
that significant, but in [13] we showed that, when implementing Dijkstra’s
algorithm for computing the shortest-path distances in a directed graph
with non-negative edge lengths, it was possible to make several factor-of-
two improvements to the basic algorithm given in [31]. It turned out that
the priority queue was not the computational bottleneck in this algorithm.
We had to improve the algorithm, simplify the graph representation, reduce
the number of cache misses, and tune the underlying priority-queue imple-
mentations. First after these changes one could see which priority queue
performed best in this application.

In theory rank-relaxed weak heaps were the best, but in this application
binary heaps where the fastest and weak heaps [12] (see also [14]) performed
the fewest number of element comparisons. In synthetic experiments the
lazy variant of Fibonacci heaps was almost unbeatable; for extract-min, only
weak queues (binary variants of binomial queues) [35] were faster and weak
heaps [12] were better with respect to the number of element comparisons
performed. For more details on these experiments, consult [13].

With hindsight, it is clear that we made several mistakes when studying
the performance of addressable priority queues.

1. In our analysis the emphasis was on the worst-case complexity, whereas
in our experiments we considered randomly generated data. We, as
others, failed to provide a typical-case analysis simply because this is
difficult to grasp.

2. Our focus has been too much on numeric data. For different kind of
data the experimental results would have been different (see, e.g. [25]).

3. Many of our experiments indicated that the correlation between the
number of element comparisons performed and running time can be
poor. Seems that caching effects should be taken more seriously.

4. For dense graphs, Dijkstra’s algorithm was not a good benchmark for
priority queues because, compared to the number of edges, decrease
operation was only called few times. We should have considered worst-
case input instances as well.

5. We tried hard to program the best theoretical designs. Sometimes we
should have taken shortcuts and we could have used more heuristics.

III Mergeable priority queues

Q. What is the best mergeable heap with respect to the number of element
comparisons performed and with respect to the running time?

A. Fibonacci heaps [23] support minimum, insert , decrease, and union in
O(1) amortized time; and extract-min and delete in O(lgN) amortized time.
Three data structures are known to match these bounds in the worst case.
Their performance with respect to the number of element comparisons is
summarized in Table 5. The large constant in the leading term in the com-
plexity of extract-min and delete makes these data structures galactic.
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Table 5. Performance of some mergeable heaps in terms of the number of element com-
parisons performed. N denotes the number of elements currently stored.

Data structure extract-min/delete Other operations
meldable priority queue [4] β lgNa) O(1)
optimal priority queue [20] ≈ 70 lgN O(κ)b)

strict Fibonacci heap [5] τ lgN c) O(1)
lower bound lgN −O(1) Ω(1)

a) Brodal’s constant β is high
b) Katajainen’s constant κ is high
c) Tarjan’s constant τ is unknown

If the complexity of union is allowed to be logarithmic, the number
of element comparisons involved in extract-min and delete gets as low as
lgN + O(lg lgN) [17]. If the complexity of decrease is allowed to be log-
arithmic, the number of element comparisons involved in extract-min and
delete is bounded above by 2 lgN + O(1) [18]. Even though worst-case-
efficient mergeable heaps are seldom needed in practice, it is fascinating
how big the jump is in the comparison complexity of extract-min and delete
if all the other operations are required to take O(1) worst-case time.

Concluding remarks

Q. What are the open problems?

A. The driving force in our research has been an intellectual curiosity to
determine the comparison complexity of priority-queue operations when dif-
ferent sets of operations are supported. It is open whether the best bounds
proved can be improved or not.

Katajainen’s 1st conjecture. When minimum, insert , and union (but
not decrease) are to be supported in O(1) worst-case time, extract-min
and delete can be supported in O(lgN) worst-case time including at
most lgN +O(lg lgN) element comparisons.

Katajainen’s 2nd conjecture. When minimum, insert , decrease, and
union are to be supported in O(1) worst-case time, extract-min and
delete can be supported in O(lgN) worst-case time including at most
20 lgN element comparisons.

Katajainen’s 3rd conjecture. A request sequence consisting of N insert ,
N extract-min, and M decrease operations can be processed in O(M +
N lgN) worst-case time by performing at most 2M+N lgN+o(N lgN)
element comparisons.

Q. What to do next?

A. In my opinion the following questions would merit further investigation.
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1. Try to make the galactic data structures mentioned practical.
2. In the theory of in-place data structures it is normal to assume that

an infinite array of elements is available. In our implementations we
assumed that N is known beforehand, so we pre-allocated the space
needed. If it is necessary to rely on dynamic memory allocation, which
effect does memory management have on the performance of the data
structures?

3. An external heap [37] is one of the few data structures that is also
efficient in main memory. Are there other data structures that have
this property? Also, analyse the constant factors in the complexity
bounds of external-memory algorithms whose performance is analysed
asymptotically.

4. In an early study [25], where we used policy-based design, the policies
were quite small. Sometimes such policies introduced an extra overhead
because the compiler was not able to optimize highly parametrized
programs properly. It would important to understand the reason for
this abstraction overhead.
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