
Project description: Foundations and tools for
building well-behaved systems

Institution: Department of Computing, University of Copenhagen
(DIKU)

Project duration: 1.1.2009–31.12.2011
Principal investigator: Jyrki Katajainen, Assoc. Prof.
Other investigators: Amr Elmasry, Humboldt Prof., Max-Planck-Institut für

Informatik, Germany; and Alexandria University, Egypt
Jon Daniel Elverkilde, B. Sc.
Claus Jensen, M. Sc.
Jens Rasmussen, B. Sc.
Bo Simonsen, B. Sc.
Lars Yde, M. Sc., Saxo Bank

Academic partners: Cyrille Artho, Ph.D., National Institute of Advanced
Industrial Science and Technology, Japan
Gianni Franceschini, Ph. D., University of Pisa, Italy
Sibylle Schupp, Assoc. Prof., Chalmers University of
Technology, Sweden

Abstract

We aim at doing basic research on the theoretical foundations on how
to build reliable, safe, and fast software systems, and developing tools
that make the construction and maintenance of such systems easier.
The theoretical questions taken up are related to algorithms, exception
safety, and memory management, among other things, and the practical
implementation calls for tools to test that components are well-behaved.
Our goals are: 1) To study the foundation of a program library in order
to gain new knowledge and thereby optimize existing components. 2) To
develop software tools which make construction of reliable components
easier and are of general interest. 3) To build a program library, the
development of which can be used as a reality exercise when training
software developers.

1. Background

Programming is hard, and maintenance programming is particularly so since
the maintenance programmer has to understand the theory on which the
program was built1. Constructing and maintaining well-behaved software is
still harder.
1 Peter Naur, Programming as theory building, Microprocessing and Microprogramming
15(5) (1985), 253–261.

CPH STL Report 2008-5, August 2008.

http://www.diku.dk/~jyrki/
http://staff.aist.go.jp/c.artho/
http://www.di.unipi.it/~francesc/
http://www.cs.chalmers.se/~schupp/


2 Cyrille Artho, Claus Jensen, and Jyrki Katajainen

In performance engineering the goal is to translate algorithms into
efficient computer programs. The performance engineering laboratory2 (PE-
lab) in the Department of Computing3 at the University of Copenhagen was
founded in 1999. One of the major initiatives of the PE-lab is the CPH STL4

project, which started in 2000 and where the goal is to develop an enhanced
edition of the STL, now part of the C++ standard library. Initially, our
focus was on time and space efficiency, but now also safety, reliability, and
usability of the library components.

The mission of the PE-lab is to educate elite programmers and to do
high-quality research related to all aspects of programming, performance
programming in particular. Since the foundation of the laboratory one doc-
tor and 21 masters have completed their studies under the supervision of
the principal investigator.

In the PE-lab, we conduct basic research; we have several application do-
mains in mind, but we seldom give attention to any specific applications. For
example, the C++ standard library, which includes the STL, is claimed to be
the most used program library in the world. That is, our work has impor-
tant implications for the whole society, even if we focus on the computational
foundations and, in our research on software tools, on the development of
proof-of-concept tools and prototypes, not end-user products.

The actual research is carried out in collaboration between the students
associated with the PE-lab and other investigators, including the principal
investigator. In this project the PE-lab will extend its focus on perform-
ance to include reliability, safety, and usability. We will still work in the
areas where we have high expertise: experimental algorithmics and soft-
ware construction. In-depth expertise in other areas will be provided by our
academic partners: Cyrille Artho5 (program analysis and software tools),
Gianni Franceschini6 (theoretical algorithmics), and Sibylle Schupp7 (soft-
ware methodologies and systems).

To attract new students to take part in the project, we will regularly offer
courses on topics related to software development. At the moment the fol-
lowing courses in our graduate program are taught by the members of the
PE-lab (in collaboration with other research groups): requirements develop-
ment (first time in 2008), software construction (first time in 2008), generic
programming and library development (first time in 2006), and performance
engineering (first time in 1998).

We apply a major framework grant with a budget of DKK 3.2 million
in total (excl. overhead) covering operating expenses, research travel, at-
tendance at conferences, expenses in connection with the hosting of visiting

2 http://www.diku.dk/research-groups/performance-engineering/
3 http://www.diku.dk/
4 The Copenhagen Standard Template Library; for more information, consult the project
website at http://cphstl.dk/.
5 http://staff.aist.go.jp/c.artho/
6 http://www.di.unipi.it/∼francesc/
7 http://www.cs.chalmers.se/∼schupp/

http://www.diku.dk/research-groups/performance-engineering/
http://www.diku.dk/
http://cphstl.dk/
http://staff.aist.go.jp/c.artho/
http://www.di.unipi.it/~francesc/
http://www.cs.chalmers.se/~schupp/
http://www.diku.dk/research-groups/performance-engineering/
http://www.diku.dk/
http://cphstl.dk/
http://staff.aist.go.jp/c.artho/
http://www.di.unipi.it/~francesc/
http://www.cs.chalmers.se/~schupp/


Foundations and tools for building well-behaved systems 3

researchers, salary expenses for a student assistant, and salary expenses for
a Ph. D. student, to be distributed over the years 2009, 2010, and 2011. If
it is not possible to get support for a Ph.D. student, our secondary pref-
erence is a normal framework grant with a budget of DKK 1.5 million in
total (excl. overhead). The budget details can be found elsewhere in the
application.

Planned research and development is detailed in §§ 2 and 3. Two of the
problems we have determined to tackle are discussed in § 2 and the tools we
have planned to develop are discussed in § 3.

2. Foundations

In this section we mention open questions which we have encountered in
our earlier research. The problems mentioned should give a flavour of the
research planned for the next three years.

Safe standard-library components

In the CPH STL project our goal is develop realizations of the C++ standard-
library containers that are safer and more reliable than any of the existing
realizations. We focus on the following requirements:
Running time: Every container operation must be as efficient as specified

in the C++ standard8, or faster, not only in the amortized sense but in
the worst-case sense.

Space usage: The amount of space used must be linear on the number of
elements currently stored.

Strong exception safety: Every container operation must be strongly ex-
ception safe. That is, each operation completes successfully, or throws
an exception and makes no changes to the manipulated container and
leaks no resources9.

Referential integrity: References and iterators to elements stored must
be kept valid at all times (except when an element is erased).

The challenge is to achieve the requirements without loss of time efficiency.
Also, it is important to understand the performance implications of the
requirements compared to other related requirements (robust iterators, per-
sistence, and other forms of exception safety). Of these requirements, the
strong guarantee of exception safety has turned out to be difficult to achieve,
even though in principle there is no hindrance to it10.

8 British Standards Institute, The C++ Standard: Incorporating Technical Corrigendum 1,
2nd Edition, John Wiley and Sons, Ltd. (2003).
9 For further details on exception safety, see, for example, Appendix E of the book by
Bjarne Stroustrup, The C++ Programming Language, Special Edition, Addison Wesley
Longman, Inc. (2000).
10 Jyrki Katajainen, Making operations on standard-library containers strongly exception
safe, CPH STL Report 2007-5, Department of Computing, University of Copenhagen
(2007).

http://cphstl.dk/


4 Cyrille Artho, Claus Jensen, and Jyrki Katajainen

Yet another requirement, particularly relevant when programming com-
puters with multi-core and many-core architectures, is:
Thread safety: A piece of program is thread safe if it functions correctly

even when it is executed concurrently by multiple threads.
Kasper Egdø faced the challenge of multi-threaded programming when he
built a complete transaction system above the C++ programming language
and thread-safe standard-library containers on top of that system11. It
would be important to continue this line of research.

Sound model of computation

When writing a program, the programmer has an abstract machine model
in mind, called the random-access machine, the C++ machine, or the Java
virtual machine depending on the context. The model is not exact, so the
performance of some of the features provided by modern programming lan-
guages are not 100% predictable. Predictability is important in several
application areas like embedded systems and real-time systems.

It is unclear how the following features can be supported in a predictable
manner, if feasible at all:
Random access: In the classical random-access machine the memory is

flat and each memory cell is expected to be reachable at unit cost.
In reality, the computers have a hierarchy of memory levels and access
time depends on the caching strategies used when moving data between
different memory levels. The number of operations performed is seldom
a predictable measure for the actual running time.

Memory management: In the standard model of memory allocation a
memory manager allows one to allocate and free variable-sized segments
of memory. Recently, it has been shown that both of these operations
can be supported in constant worst-case time12. However, this cannot
be achieved without excessive memory fragmentation. It is known that,
if the total number of memory cells to be allocated is N , any memory
manager needs Ω(N lg N) cells to serve the requests in the worst case.
Under this abstraction, the amount of memory used is not predictable.

Exception handling: When an exception is thrown, the time needed to
handle it depends on the distance between the throw point and the
catch point (measured in function calls) and the number of objects
needed to be destroyed on the way. The running time is not necessarily
a constant and it can be difficult to predict13.

11 Kasper Egdø, A software transactional memory library for C++, Master’s Thesis, De-
partment of Computing, University of Copenhagen (2008).
12 Gerth Stølting Brodal, Erik D. Demaine, and J. Ian Munro, Fast allocation and deal-
location with an improved buddy system, Acta Informatica 41(4-5) (2005), 273–291.
13 This problem was communicated to us by Bjarne Stroustrup; it appears in print, for
example, in Bjarne Stroustrup, Abstraction and the C++ machine model, Revised Selected
Papers from the 1st International Conference on Embedded Software and Systems, Lecture
Notes in Computer Science 3605, Springer-Verlag (2005), 1–13.



Foundations and tools for building well-behaved systems 5

We have attacked the first issue in our earlier research. For example, we
introduced the least-recently-used cache model in 1999 as a model of com-
putation for developing algorithms in a hierarchical memory environment14;
the ideal cache model, which is in common use, was introduced simultane-
ously and independently with our work15. Focus in our forthcoming research
will be on the last two issues where interesting work is to be done.

3. Tools

In this section we mention some development challenges we have decided to
tackle. The tools to be developed are thighly connected to the CPH STL
project, but we expect them to be of interest in other environments as well.
The three activities mentioned below are somewhat interconnected. They
are expected to form the kernel of the Ph. D. work for which we apply for
support. The first (a tool for model-based testing) and second activity (fault
injection) could be done independently, at least initially. However, the third
activity (testing for thread safety) requires that the first one has already
produced a usable tool, although not all features are needed.

Model-based testing for C++

Model-based testing takes a high-level description of the behaviour of a
system under test (SUT). Using this model, test cases can be generated
automatically. Recently, tools have become powerful enough to make model-
based testing applicable in practice. Still, some aspects of currently available
tools leave room for improvement. In the most popular openly available tool,
ModelJUnit16, the description of a state machine is written in the target
programming language. While this integrates the actions of the SUT with
the model, it makes model creation and maintenance unnecessarily complex.

A separation of the underlying state machine in the model from the im-
plementation of its actions promises to deliver a more concise model. In
addition to that, existing state-machine visualization tools could then be
used directly. Finally, the tool should be flexible enough to handle both
C++ and Java. As an extension to existing tools, specification of exceptional
behaviour should also be taken into account, accounting for both expected
(deterministic) and intermittent (non-deterministic) exceptions.

14 Jesper Bojesen, Jyrki Katajainen, and Maz Spork, Performance engineering case study:
Heap construction, Proceedings of the 3rd International Workshop on Algorithm Engineer-
ing, Lecture Notes in Computer Science 1668, Springer-Verlag (1999), 301–315.
15 Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran,
Cache-oblivious algorithms, Proceedings of the 40th Annual Symposium on Foundations
of Computer Science, IEEE Computer Society (1999), 285–297.
16 Mark Utting and Bruno Legeard, Practical Model-Based Testing: A Tools Approach,
Morgan Kaufmann (2007).

http://cphstl.dk/


6 Cyrille Artho, Claus Jensen, and Jyrki Katajainen

Fault injection and exception safety

Fault injection simulates exception occurrence in software. Exceptions often
occur due to underlying hardware or network failure, but also on other unex-
pected events, such as unavailability of memory. Many kinds of exceptions,
such as input/output errors, occur sporadically and cannot be reproduced in
a deterministic way. This makes it hard to test exception handlers properly.

Fault injection has been devised to deal with this problem17. However,
fault injection is often performed on a black-box level, without knowledge
of the implementation or test structure. Randomized fault injection is often
used, making verification of exception handlers unreliable.

When applied to unit tests, fault injection can target individual failures
by re-using a particular unit test. Compared to random testing, performance
is improved by an order of magnitude18.

Such a fault injection technique could also be used to test C++ library
components for different levels of exception safety. If test cases are generated
from a formal model, the initial coverage analysis phase used in previous
work18 may even be subsumed by information contained in the model.

Expedient testing for thread safety using model-based testing

Many libraries promise the thread safety of their implementation. However,
a correct implementation is difficult to achieve in practice. The problem
is that the outcome of a particular execution depends on the execution
schedule, which varies between test runs and cannot be controlled directly.

Various techniques have been derived to improve detection of concurrency-
related problems. The two most important techniques include controlled
schedule perturbation, to cover a larger subset of the potential behaviours19,
and data race detection. In the latter approach, potentials for access con-
flicts are detected by observing locking patterns. This can reveal access
conflicts even if no incorrect result is produced by a test execution20.

Modern software often has a rich API, allowing for different ways to reach
a particular goal. Model-based testing makes it possible to execute several
17 M. Hsueh, T. Tsai, and R. Iyer, Fault injection techniques and tools, IEEE Computer
30(4) (1997), 75–82.
18 Cyrille Artho, Armin Biere, and Shinichi Honiden, Exhaustive testing of exception han-
dlers with Enforcer, Proceedings of the 5th International Symposium on Formal Methods
for Components and Objects, Lecture Notes in Computer Science 4709, Springer-Verlag
(2007), 26–46.
19 Orit Edelstein, Eitan Farchi, Evgeny Goldin, Yarden Nir, Gil Ratsaby, and Shmuel
Ur, Framework for testing multi-threaded Java programs, Concurrency and Computation:
Practice and Experience 15(3-5) (2003), 485–499.
20 Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Ander-
son, Eraser: A dynamic data race detector for multithreaded programs, ACM Transactions
on Computer Systems 15(4) (1997), 391–411.

Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran, Goldilocks: Efficiently computing
the happens-before relation using locksets, Proceedings of the 1st Combined International
Workshops on Formal Approaches to Software Testing and Runtime Verification, Lecture
Notes in Computer Science 4262, Springer-Verlag (2006), 193–208.



Foundations and tools for building well-behaved systems 7

alternative behaviours. This technique could be extended to generate sce-
narios using concurrent access to a data structure. Existing verification
techniques for concurrent software could then be applied to a large number
of scenarios, making detection of subtle problems more likely.

On behalf of the research group

Copenhagen, 29 August 2008

Jyrki Katajainen
Assoc. Prof., Ph. D.


