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Abstract. In this paper I will describe the algorithms and optimization techniques
used to implement the next_permutation and prev_permutation functions in the
Copenhagen STL. These two functions use reverse, which is why I will also describe
the optimizations used in implementing the reverse and reverse_copy functions.

Furthermore I will discuss several ways of implementing the reverse function on
forward access containers.

I will mainly discuss implementation details, instead of algorithm details, since
the algorithms I use are all well-known.

1. reverse

The reverse function takes two bidirectional iterators as arguments, and
reverses the elements between the two iterators.

1.1 Algorithms

The basic algorithm uses two iterators that travel from the ends towards the
center. During this the elements that the iterators point to are swapped.

If you use bidirectional iterators, this is the only algorithm that will work
in practice. But if you use random access iterators, you can use the enhanced
functionality of these iterators to boost performance.

Mortensen [2001] proposed using instruction level parallelism to boost per-
formance. I tried this and instead of having two iterators, I had four iter-
ators working in two pairs. In theory this should give better instruction
level parallelism, but since the main resource in this case was the cache,
the benchmarks quickly showed that this was not the right way to go. In
[Bojesen 2000] Bojesen shows that even though an algorithm looks like it
should be more effective, then it might not be, if the memory hierarchies is
not used effectively.

Loop unrolling is a straight forward optimisation that can easily be used on
this algorithm. This however has a slight disadvantage on small sequences.

Sequences with less than two elements, does not need to be reversed.
Making a special case for this is simple, and it reduces the range in which
the algorithm suffers from the overhead of loop unrolling.
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1.2 Benchmarks

In order to give a more precise impression of the performance of the algo-
rithms, I have eight different benchmarks, each showing different aspects of
the algorithms.

Half of my benchmarks are run on one long sequence, where a new subse-
quence is reversed each time. This shows how the algorithm behaves when
the sequence to be reversed is not already in the cache. The other half of the
benchmarks is run on the same sequence each time, which allows efficient
use of the cache.

Half of my benchmarks are run on sequences of unsigned integers, and the
other half on sequences of 100 byte objects. Since this is a very memory
intensive function, the optimizations should not be as evident on the large
objects.

Half of my benchmarks are run on vectors, which use random access iter-
ators. The other half is run on lists, which use bidirectional iterators.

The SGI STL implementation [SGI 2001] does not inline the reverse func-
tion, but I do not see any reason for not doing this. Which is why the
overhead of calling my functions is slightly smaller.

The unoptimized version of my functions, is basically the same as the
optimized but without the use of loop unrolling.

1.2.1 Random access iterators

Since the most optimisation is done on the random access iterator version
of the algorithm, the best results are expected for this algorithm.

The reversal of a sequence of unsigned integers, with (Figure 1) and with-
out (Figure 2) the elements already in the cache. Shows clearly that the
inlining and loop unrolling pays off.

The reversal of a sequence of large objects, with (Figure 3) and without
(Figure 4) the elements already in the cache. Shows no real advantage to
any of the algorithms, except for sequences of length shorter than 2, where
reversal is not necessary.

1.2.2 Bidirectional iterators

Since there is no major differences between my implementation and the
SGI STL implementation [SGI 2001], no difference is expected between the
different implementations, except for the small overhead of calling the SGI
function.

The four benchmark figures (Figure 5, Figure 6, Figure 7 and Figure 8)
shows that there is no major difference between the different implementa-
tions.
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Figure 1. Benchmark for reverse with random access iterators and use of cache.
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Figure 2. Benchmark for reverse with random access iterators and no use of cache.
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Reversal of array with use of cache (Random access, big objects)
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Figure 3. Benchmark for reverse with random access iterators, big objects and use of
cache.
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Figure 4. Benchmark for reverse with random access iterators, big objects and no use of
cache.
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Reversal of array with use of cache (Bidirectional access)
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Figure 5. Benchmark for reverse with bidirectional iterators and use of cache.
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Figure 6. Benchmark for reverse with bidirectional iterators and no use of cache.
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Reversal of array with use of cache (Bidirectional access, big objects)
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Figure 7. Benchmark for reverse with bidirectional iterators, big objects and use of
cache.
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Figure 8. Benchmark for reverse with bidirectional iterators, big objects and no use of
cache.
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Figure 9. Benchmark for reverse_copy with random access iterators and use of cache.

2. reverse_copy

The reverse_copy takes two bidirectional iterators and an output iterator
as arguments. The elements between the two iterators are written to the
output sequence in reverse order.

2.1 Algorithm

Some of the same optimizations that where used in reverse, can also be used
here. T have split the algorithm in two, one for random access iterators,
and one for bidirectional iterators. The random access method I have loop
unrolled.

2.2 Benchmarks

The same benchmarks was performed for this algorithm, as for reverse in
Sec. 1.2. The unoptimized version is the same as used in [SGI 2001], except
that it is inlined.

As suspected, the random access iterator benchmarks gave a performance
boost. This is seen in (Figure 9, Figure 10, Figure 11, Figure 12).

Since no optimisation, except the inlining, is used in the bidirectional
version. No major difference is expected between the two implementations.
Since these benchmarks are not really that interesting, I have only included
one benchmark (Figure 13).
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Figure 10. Benchmark for reverse_copy with random access iterators and no use of cache.
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Figure 11. Benchmark for reverse_copy with random access iterators, big objects and
use of cache.
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3. Forward reverse

The STL usually only supports reverse for bidirectional iterators, and not
for forward iterators. The reason for this is that it is expensive to reverse
a sequence that only supports forward access and in many cases you have
made a bad choice of containers, if you are forced to reverse a container that
only supports forward access. However, it is possible to reverse a sequence
that only supports forward access, although it is quite a challenge to do it
effectively.

The slist class, which is the only sequence in [SGI 2001] that only supports
forward access, supports a member function reverse, which reverses the list.
This function only edits the internal pointers, and does not copy any of
the objects. This function would be better to use in almost any cases. A
specialized forward reverse, could be useful in other algorithms which does
not have access to the slist object. It could also be useful to reverse shorter
segments of list.

Two general algorithms are proposed for this problem:

— A linear time algorithm, which also uses a linear amount of memory.

— A O(nlogn) time algorithm, which works in place and only uses a

constant amount of extra memory.

3.1 Linear algorithm

The linear time algorithm copies all of the elements to a temporary buffer,
and then copies the elements back again in reverse order. This can however
be a problem, if there is no more memory left to use. I will however assume
that it is possible to allocate enough memory to execute the algorithms.

3.1.1 Recursive

The recursive function simply takes a copy of the current object, and then
calls the function recursively. After the recursive call, it copies the object
back to the sequence. In this way the last object will be the first object to
be copied back.

In order to optimize this function, the recursive calls can be unrolled.

3.1.2 Non-recursive

The non-recursive function first calculates the size of the sequence, then
copies all of the elements to a temporary buffer of that size. The elements
are then copied back in reverse order using copy_reverse.

3.2 O(nlogn) Algorithm

The in place algorithm, only uses a constant amount of memory, but the
time complexity is worse.
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Figure 14. Reversal of array with only use of forward iterators. Simple case where length
is a power of two.
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Figure 15. Reversal of array with only use of forward iterators. More complicated case
where length is not a power of two.

3.2.1 The basic algorithm

The basic idea behind the algorithm, is to reverse small sequences, and
then swap these sequences until the whole array has been reversed. A small
example of this can be seen in Figure 14.

If the length of the sequence is not a power of two (in some cases there are
other restrictions on the length of the sequence), it is not possible to swap
the last two subsequences and they need to be rotated. A small example of
this can be seen in Figure 15.

3.2.2 Optimisation tricks

When implementing this algorithm the number of swaps should be mini-
mized. The number of calls to rotate, and the length of the sequence to be
rotated should also be minimized.

To reduce the number of swaps, a simple trick, is to reverse sequences of
three instead of sequences of two, since the same number of swaps is required
to reverse a sequence of three as a sequence of two. Sequences of five and
seven is also possible.

To reduce the length of the sequence to be rotated, it might be an idea
to switch between reversing sequences of two, three, five and maybe even
seven. In this way, a sequence of the length ten could be reversed by a five
reversal and a two reversal. And there would not be any bit left unreversed.
Where if only three reversal was used, it would take two three reversals, and
a rotate. This example is illustrated in Figure 16. The problem in this case
is however finding a good way to determine which reversals to use.

If the length of the sequence is known in advance, the operations that
should be done can be precalculated, and they can then be done in the
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Figure 16. Reversal of array with only use of forward iterators. Bottom-up with different
reversal lengths.
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Figure 17. Reversal of array with only use of forward iterators. Top-down with different
reversal lengths.

reverse order. This would allow a top-down recursive function. A small
example of this can be seen in Figure 17.

3.8 Implementation

I have implemented three different algorithms for this problem.

— The unrolled recursive algorithm as described in Sec. 3.1.1.

— The non-recursive algorithm as described in Sec. 3.1.2.

— The O(nlogn) time algorithm as described in Sec. 3.2.

The unrolled recursive function has been unrolled five levels, but still all
data is saved on the stack, which gives the need of at least as much stack
space, as the size of the sequence. It is not likely that this amount of stack
space is available.

The non-recursive function is implemented straight forward, by first count-
ing the elements, and then allocating temporary space for the elements. This
still depends on available free memory, but since it is heap memory and not
stack memory, it should be possible to allocate more of it. But still, at some
point even the heap memory will be used, and then this is not the best
algorithm.

I have implemented the O(nlogn) algorithm as a bottom up algorithm.
The basics are as follows: First the sequence is run through and pairs of three
elements is reverse. In the end there is either zero, one or two elements left,
if there are two elements left these two elements are swapped. During this
first run the elements are counted and this count is used in the following
iterations. Each of the following iterations is composed of three steps:

— First the subsequences that can be reversed easily is reversed by three
reversal, much like in the first run except for the fact that the subse-
quences that are swapped, are longer than one element.

— Then the remaining part is considered, there is either zero, one or two
whole subsequences left. If there is two subsequences left, these two
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Figure 18. Benchmark for reverse with forward access iterators and use of cache.

subsequences are swapped.

— Lastly the remaining part is rotated with the remainder from the pre-
vious iterations.

After logs n iterations the sequence is completely reversed.

3.4 Benchmarks

I have made four benchmarks. One which which runs repeatedly on the
same sequence (Figure 18), one which runs on a new sequence each time
(Figure 19) and the same two benchmarks for big objects (Figure 20 and
Figure 21).

The recursive algorithm seems to be the one that does the best job on
all of the four benchmarks. There is however a major problem, when the
sequences get too long. The problem is that the algorithm runs out of stack
space and fails. This problem makes this algorithm a bad choice.

The non-recursive algorithm is very slow on small sequences, this is be-
cause it takes some time to allocate the desired space. This problem can
however be fixed, by calling a different algorithm if the length of the sequence
is short. A worse problem is however that the algorithm can fail to allocate
the desired amount of memory. This is not visible on the benchmarks, but
at some point it will happen.

The O(nlogn) algorithm has none of the memory problems that the other
algorithms have. The problem with this algorithm is however that it is slower
than the other algorithms. Since it is a bottom-up algorithm, it accesses the
memory very inefficiently and is therefore slow on large sequences.
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Figure 19. Benchmark for reverse with forward access iterators and no use of cache.
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7000 T T
Non-recursive line; gorithm ------
Unrolled recursive lingér algorithm ---o---
(n |l@g n) algorithm —=—
6000 4
2y
=]
c
Q
o
@ 5000 i
=]
=4
©
c
£
= 4000 i
(3]
=
K}
[)
@ 3000 i
o
(]
£
< oo e X
S 2000 | R, |
@ o000 -0
] o
1000 F-. i
e
rrrrr 0BT B
0 L L L L L
1 10 100 1000 10000 100000 1le+06

Figure 20. Benchmark for reverse with forward access iterators, big objects and use of
cache.
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Reversal of array with no use of cache (Forward access, big objects)
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Figure 21. Benchmark for reverse with forward access iterators, big objects and no use
of cache.

3.4.1 Conclusion

All of the implemented algorithms has some kind of drawback, which leads
me to believe that perhaps none of the implemented algorithms is the right
choice for the CPH STL [CPHSTL 2001]. The best algorithm might be a
algorithm that uses the O(nlogn) for short sequences and the non-recursive
for longer sequences, except when the non-recursive fails to allocate memory,
where the O(nlogn) algorithm should be used again. The O(nlogn) algo-
rithm in it self could also be optimized to be top-down instead of bottom-up.
And some of the other optimisation tricks could also be implemented.

Implementing this kind of algorithm is a project in it self, which is why I
will not do that in this project.

4. next_permutation and prev_permutation

next_permutation takes two bidirectional iterators as arguments, and per-
mutes the sequence between the two iterators. So that it is the next permu-
tation in lexicographical order. E.g. the sequence [a,b,c] will be converted
to the sequence [a,c,b]. prev_permutation does the opposite. There is also a
version of the two algorithms that takes a comparison object as an argument.

4.1 The algorithm

For this there is only one known effective algorithm. It is an algorithm
proposed by Fischer and Krause back in 1812. More can be read about this
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Figure 22. Benchmark for next_permutation with random access iterators.

algorithm in [Sedgewick 1977a], [Sedgewick 1977b] and [Johnson 1998]. I
will not explain how or why this algorithm works, but it contains a call to
reverse, for sequences, which most of the time are very small. The algorithm
is not effected much by the length of the sequence, since most of the time
only the least significant elements are changed.

4.2 Optimizations

The most straight-forward optimisation is to use my own new optimized
reverse, and to make the function inlined. Another is splitting up the algo-
rithm in one for random access iterators, and one for bidirectional iterators.
The random access version can furthermore be optimized.

4.8 Benchmarks

I have chosen to run the program a large number of times and calculated
how long time it took to run the algorithm at a specific length, as opposed
to calculating the time per element. This I have done, because the algorithm
is not affected much by the length of the sequence. Because of this choice, I
can only show benchmarks, which is run repeatedly on the same sequence,
causing the elements to be in the cache.

Since there is no significant difference between the next_permutation and
the prev_permutation implementations, only benchmark results for next_per-
mutation are showed. Benchmarks for the version which takes a comparison
object is not showed either, since it only gives a small penalty.
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Figure 23. Benchmark for next_permutation with random access iterators and big ob-
jects.

Next permutation (Bidirectional access)
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Figure 24. Benchmark for next_permutation with bidirectional iterators.
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Next permutation (Bidirectional access, big objects)
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Figure 25. Benchmark for next_permutation with bidirectional iterators and big objects.

The unoptimized version is exactly the same as the SGI STL version [SGI
2001], but with the use of my optimized reverse and inlining.

For random access iterators a big performance boost can be seen on Fig-
ure 22 and on Figure 23.

For bidirectional iterators a performance boost can be seen on Figure 24
and on Figure 25. But a strange thing has happened, the unoptimized
version are faster than the hand optimized version. The reason for this,
is that the two version i practically the same, but the unoptimized version
is not split in a random access version and a bidirectional version. Which
apparently helps a bit in the inlining, and gives a slightly smaller overhead.

5. Conclusion

The main purpose of this paper was to implement the next_permutation and
the prev_permutation algorithms for the CPH STL [CPHSTL 2001]. Along
the way came other projects like reverse, reverse_copy and forward reverse.

The main project was a success and the permutation algorithms are faster
in [CPHSTL 2001] than in [SGI 2001]. The other projects where also a
success, except the forward reverse algorithm which I do not think is mature
enough to be included in the Copenhagen STL.

5.1 Future work

I do not think that there is much future work in any of the algorithms that
I have implemented, except for forward reverse. Much work can be done for
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forward reverse, but there has not been found any real use for this function
see discussion in Sec. 3. I do not think that too much work should be put
into forward reverse before a real need for this function is established.
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